CONTENTS | Preface | | xi | |---------|---|----| | 1 | Linear Systems, Random Data | | | | 1.1 Linear Systems, 1 | | | | 1.1.1 Weighting Functions, 31.1.2 Frequency Response Functions, 6 | | | | 1.2 Random Data, 7 | | | | 1.2.1 Basic Properties, 91.2.2 Probability Functions, 11 | | | | 1.3 Spectral Density Functions, 12 | | | | 1.4 Input/Output Spectral Relations, 18 | | | 2 | Zero-Memory Nonlinear Systems | | | | 2.1 Nonlinear Material in Book, 21 | | | | 2.2 Zero-Memory Nonlinear Systems, 22 | | | | 2.2.1 Finite-Memory Nonlinear Systems, 232.2.2 Examples of Zero-Memory Nonlinear Systems, 25 | | | | 2.3 Output Probability Density Function, 28 | | | | 2.4 Output Autocorrelation Function, 31 | | | | 2.5 Input/Output Cross-Correlation Function, 34 | | | 2.6 | Examples with Discontinuous Derivatives, 37 | | |-----|--|----| | | 2.6.1 Two-Slope Systems, 37 2.6.2 Dead-Zone System, 40 2.6.3 Clipped System, 41 2.6.4 Hard-Clipped System, 43 2.6.5 Nonsymmetric Hard-Clipped System, 45 2.6.6 Smooth-Limiter System, 46 2.6.7 Summary of Results, 50 | | | 2.7 | Square-Law and Cubic Systems, 51 | | | | 2.7.1 Square-Law System, 512.7.2 Cubic System, 542.7.3 Square-Law System with Sign, 572.7.4 Summary of Results, 59 | | | 2.8 | Hardening and Softening Spring Systems, 60 | | | | 2.8.1 Hardening Spring System, 60 2.8.2 Softening Spring System, 63 2.8.3 Hardening/Softening Spring System, 65 2.8.4 Softening/Hardening Spring System, 67 2.8.5 Standardized Output Variable, 68 2.8.6 Summary of Results, 70 | | | 2.9 | Third-Order Polynomial Least-Squares Approximation, 71 | | | | rect and Reverse MI/SO Techniques for Analysis and entification of Nonlinear Systems | 77 | | Pa | nrallel Linear and Nonlinear Systems | 97 | | 4.1 | 1 Analysis Methodology, 97 | | | 4.2 | 2 Two-Input/Single-Output Linear Models, 102 | | | 4.3 | 3 Statistical Errors in Estimates, 105 | | | 4.4 | 4 Nonlinear Wave Force Models, 108 | | | 4.: | 5 Nonlinear Drift Force Models, 110 | | | 4.0 | 6 Case 1 and Case 2 Nonlinear Models, 112 | | | | 4.6.1 Case 1 Square-Law and Cubic Models, 1124.6.2 Extended Case 1 Nonlinear Models, 1144.6.3 Case 2 Square-Law and Cubic Models, 115 | | | 4.7 Nonlinear Automotive Application, 116 | |---| | 4.7.1 Analysis of Shock Subsystem Data, 1174.7.2 Computed Results from Measured Data, 119 | | 4.8 Nonlinear Biomedical Study, 129 | | 4.9 Nonlinear Differential Equations of Motion, 132 | | 4.9.1 Single-Degree-of-Freedom Linear Systems, 1324.9.2 Reversal of Input and Output, 1344.9.3 Single-Degree-of-Freedom Nonlinear Systems, 135 | | Determination of Physical Parameters with Memory in Nonlinear Systems 138 | | 5.1 Reverse MI/SO Technique, 139 | | 5.2 Physical Parameters with Memory, 140 | | 5.2.1 Exponential Memory Terms, 1435.2.2 Exponential-Cosine Memory Terms, 146 | | 5.3 Computer Simulation Studies, 148 | | 5.4 Discussion of Simulation Results, 151 | | 5.5 Conclusions from Simulation Work, 195 | | 5.6 Six-DOF Nonlinear Models for Ocean Engineering
Applications, 196 | | 5.6.1 Nonlinear Equations of Motion, 1985.6.2 Two Ocean Engineering Cases, 2045.6.3 Summary of Results, 211 | | Nonlinear System Response Properties of a Naval Frigate from Measured Ocean Engineering Data 213 | | 6.1 Test Program in June 1994, 214 | | 6.2 Test Objectives, 215 | | 6.3 Test Description, 217 | | 6.4 Equations of Motion for a Naval Frigate, 218 | | 6.4.1 Reverse SI/SO Linear Equation for Heave Motions, 218 6.4.2 Reverse SI/SO Linear Equation for Sway Motions, 219 6.4.3 Reverse SI/SO Linear Equation for Roll Motions, 220 6.4.4 Reverse MI/SO Nonlinear Equation for Heave Motions, 221 6.4.5 Reverse MI/SO Nonlinear Equation for Sway Motions, 222 | 5 | | 6.4.6 Reverse MI/SO Nonlinear Equation for Roll Motions, 222 6.4.7 Direct MI/SO Nonlinear Equation for Heave Motions, 223 6.4.8 Direct MI/SO Nonlinear Equation for Sway Motions, 224 6.4.0 Direct MI/SO Nonlinear Equation for Roll Motions, 225 | | |-----|---|-----| | 6.5 | 6.4.9 Direct MI/SO Nonlinear Equation for Roll Motions, 225 Results from Analysis of Frigate Data, 226 | | | 0.5 | 6.5.1 Preliminary Data Analysis, 227 | | | | 6.5.2 Reverse SI/SO Analysis, 2386.5.3 Reverse MI/SO Analysis, 2406.5.4 Direct MI/SO Analysis, 248 | | | 6.6 | Conclusions from Frigate Tests, 256 | | | 6.7 | MAC/RAN System Programs, 256 | | | | 6.7.1 Preliminary Data Analysis, 2576.7.2 Reverse MI/SO Analysis, 2636.7.3 Direct MI/SO Analysis, 265 | | | | nlinear System Response Properties of a Naval
rge from Measured Ocean Engineering Data | 269 | | 7.1 | Test Program in July 1995, 270 | | | 7.2 | Test Objectives, 271 | | | 7.3 | Test Description, 272 | | | 7.4 | Equations of Motion for a Free Barge, 274 | | | | 7.4.1 Linear SI/SO Models for Small Waves, 2757.4.2 Linear SI/SO Models for Large Waves, 2777.4.3 Nonlinear MI/SO Models for Large Waves, 277 | | | 7.5 | Results from Anlysis of Barge Data, 285 | | | | 7.5.1 Linear SI/SO Analysis of Small Wave Data, 287 7.5.2 Linear SI/SO Analysis of Large Wave Data, 302 7.5.3 Linear SI/SO Frequency Response Functions, 316 7.5.4 Nonlinear MI/SO Analysis of Large Wave Head Sea Data, 321 | | | | 7.5.5 Nonlinear MI/SO Analysis of Large Wave Beam | | | | Sea Data, 339 7.5.6 Nonlinear MI/SO Analysis of Large Wave Quartering Sea Data, 357 | | | 7.6 | Conclusions from Barge Tests, 367 | | | Ril | linear and Trilinear Systems | 369 | 8.1 Functional Representation of Nonlinear Systems, 369 | | 8.1.1 Linear Systems, 3718.1.2 Bilinear Systems, 3748.1.3 Trilinear Systems, 3818.1.4 Summary of Results, 385 | |-----|--| | 8.2 | Examples, 386 | | | 8.2.1 Linear Systems, 3868.2.2 Bilinear Systems, 3898.2.3 Trilinear Systems, 396 | | 8.3 | Synthesis of Time-Varying Linear Systems, 400 | | 8.4 | Higher-Order Correlation and Spectra, 402 | | | 8.4.1 First-Order Functions, 402 8.4.2 Second-Order Functions, 404 8.4.3 Third-Order Functions, 406 8.4.4 Special Bispectral and Trispectral Density Functions, 408 8.4.5 Transient Random Data, 408 8.4.6 Summary of Results, 408 | | • | ut/Output Relations for Bilinear and Trilinear Systems 411 Linear, Bilinear, and Trilinear Systems, 411 | | | 9.1.1 Linear Systems, 412 9.1.2 Definitions and Assumptions, 414 9.1.3 Bilinear Systems, 416 9.1.4 Trilinear Systems, 425 9.1.5 Summary of Results, 429 | | 9.2 | General Third-Order Nonlinear Models, 430 | | | 9.2.1 Nonlinear Model with Correlated Outputs, 430 9.2.2 Nonlinear Model with Uncorrelated Outputs, 433 9.2.3 Identification of Linear, Bilinear, and Trilinear Systems, 437 9.2.4 Linear and Nonlinear Coherence Functions, 440 9.2.5 Summary of Results, 442 | | 9.3 | Optimum Linear and Nonlinear Systems, 444 | | | 9.3.1 Optimum Linear System, 4459.3.2 Optimum Bilinear System, 4469.3.3 Optimum Trilinear Systems, 4479.3.4 Minimum Output Noise Spectrum, 448 | | 9.4 | Case 1 and Case 2 Nonlinear Models, 449 | | | 9.4.1 Case 1 Square-Law and Cubic Models, 449 | ## x CONTENTS | | | Case 2 Square-Law and Cubic Models, 456
System Identification in Case 2 Models, 459 | | |---------------------|---------|--|-----| | Ref | erences | | 461 | | Index | | 465 | | | Glossary of Symbols | | | 473 | 9.4.2 System Identification in Case 1 Models, 454