Contents

FOREWORD vii

CHAPTER 1: ON THE CONVERGENCE OF RANDOM PROCESSES 1

1.1.	General	definitions	and theorems	1	
			•		

- 1.2. Fundamental aspects of convergence of processes 5
- 1.3. The fundamental types of limit processes 9
- 1.4. Conditions for convergence to degenerate processes 26
- 1.5. Conditions for convergence to a process of unbounded diffusion 35
- 1.6. The proof of theorem 1 of section 1.5 39
- 1.7. The proof of theorem 2 of section 1.5 48
- 1.8. Conditions for 'mean' convergence to an unbounded diffusion 52
- 1.9. Convergence to diffusion processes with reflection at a boundary 54
- 1.10. Conditions for convergence to a diffusion with two reflecting boundaries 64
- 1.11. Examples 64
- 1.12. The connection between the conditions of theorem 1 of section 1.5 and strong mixing conditions 72

CHAPTER 2: LIMIT THEOREMS FOR SYSTEMS WITH INTENSIVE INPUT STREAM AND A LARGE NUMBER OF SERVICE CHANNELS 83

- 2.1. Description of the systems. Rough theorems for the number of busy lines and for the probability of refusal 85
- 2.2. Limit theorems for the number of busy lines for underloaded systems 102
- 2.3. Convergence to a stationary process 112
- 2.4.* The connection with branching processes with intensive immigration 119

- 2.5.* On limit processes for loaded systems with refusals and with queues 124
- 2.6.* Generalization of the basic results of sections 2.2 and 2.3 to the case of dependent waiting times 128
- 2.7. The distribution of the number of free channels for overloaded systems 138

CHAPTER 3: THE DESCRIPTION OF SERVICE SYSTEMS BY DIFFUSION PROCESSES 142

- 3.1. The notions of independence of input and output streams and stochastic control 145
- 3.2. Preliminary remarks on approximation by diffusion processes 153
- 3.3. General theorems on convergence of the normalized 'occupation' q(t) to a diffusion process 157
- 3.4. Multichannel systems with intensive input streams 172
- 3.5. Independent input stream and stochastic control of refusals 182
- 3.6. Properties of systems with independent output. Loaded systems 192
- 3.7. A numerical example 200

CHAPTER 4: STABILITY THEOREMS 204

- 4.1. Subsidiary results on the distribution of the maximum of sequences of sums of stationarily related variables 207
- 4.2. Stability theorems for single-channel systems with waiting and systems with autonomous service 218
- 4.3. Some estimates for the speed of convergence 226
- 4.4. Ergodicity and stability theorems for random walks in a strip and their application to single-channel systems with constraints 240
- 4.5. Stability theorems for systems with an infinite number of service channels 251
- 4.6. General ergodic theorems and stability theorems for sequences $\mathbf{w}_{n+1} = f(\mathbf{w}_n, \tau_n)$ 258
- 4.7. Ergodic theorems and stability theorems for multichannel systems with refusals and with queues 266

REFERENCES 285