Contents

Chapter I

The Simplest Problem in Calculus of Variations

- 1. Introduction, 1
- 2. Minimum Problems on an Abstract Space—Elementary Theory, 2
- 3. The Euler Equation; Extremals, 5
- 4. Examples, 9
- 5. The Jacobi Necessary Condition, 12
- 6. The Simplest Problem in n Dimensions, 15

Chapter II

The Optimal Control Problem

- 1. Introduction, 20
- 2. Examples, 21
- 3. Statement of the Optimal Control Problem, 23
- 4. Equivalent Problems, 25
- 5. Statement of Pontryagin's Principle, 26
- 6. Extremals for the Moon Landing Problem, 28
- 7. Extremals for the Linear Regulator Problem, 33
- 8. Extremals for the Simplest Problem in Calculus of Variations, 34
- 9. General Features of the Moon Landing Problem, 35
- 10. Summary of Preliminary Results, 37
- 11. The Free Terminal Point Problem, 39
- 12. Preliminary Discussion of the Proof of Pontryagin's Principle, 44
- 13. A Multiplier Rule for an Abstract Nonlinear Programming Problem, 46
- 14. A Cone of Variations for the Problem of Optimal Control, 48
- 15. Verification of Pontryagin's Principle, 52

Chapter III

Existence and Continuity Properties of Optimal Controls

- 1. The Existence Problem, 60
- 2. An Existence Theorem (Mayer Problem, U Compact), 62

- 3. Proof of Theorem 2.1, 65
- 4. More Existence Theorems, 68
- 5. Proof of Theorem 4.1, 69
- 6. Continuity Properties of Optimal Controls, 74

Chapter IV

Dynamic Programming

- 1. Introduction, 80
- 2. The Problem, 813. The Value Function, 81
- 4. The Partial Differential Equation of Dynamic Programming, 83
- 5. The Linear Regulator Problem, 88
- 6. Equations of Motion with Discontinuous Feedback Controls, 90
- 7. Sufficient Conditions for Optimality, 97
- 8. The Relationship between the Equation of Dynamic Programming and Pontryagin's Principle, 99

Chapter V

Stochastic Differential Equations and Markov Diffusion Processes

- 1. Introduction, 106
- 2. Continuous Stochastic Processes; Brownian Motion Processes, 108
- 3. Ito's Stochastic Integral, 111
- 4. Stochastic Differential Equations, 117
- 5. Markov Diffusion Processes, 120
- 6. Backward Equations, 127
- 7. Boundary Value Problems, 129
- 8. Forward Equations, 131
- 9. Linear System Equations; the Kalman-Bucy Filter, 133
- 10. Absolutely Continuous Substitution of Probability Measures, 141
- 11. An Extension of Theorems 5.1, 5.2, 147

Chapter VI

Optimal Control of Markov Diffusion Processes

- 1. Introduction, 151
- 2. The Dynamic Programming Equation for Controlled Markov Processes, 152
- 3. Controlled Diffusion Processes, 155
- 4. The Dynamic Programming Equation for Controlled Diffusions; a Verification Theorem, 159
- 5. The Linear Regulator Problem (Complete Observations of System States), 165
- 6. Existence Theorems, 166
- 7. Dependence of Optimal Performance on y and σ, 172

- 8. Generalized Solutions of the Dynamic Programming Equation, 177
- 9. Stochastic Approximation to the Deterministic Control Problem, 181
- 10. Problems with Partial Observations, 187
- 11. The Separation Principle, 188

Appendices

- A. Gronwall-Bellman Inequality, 198
- B. Selecting a Measurable Function, 199
- C. Convex Sets and Convex Functions, 200
- D. Review of Basic Probability, 202
- E. Results about Parabolic Equations, 205
- F. A General Position Lemma, 211

Bibliography, 213

Index, 221