Contents

	Preface	page	ix
1.	Introduction		1
	1.1. The Problem		1
	1.2. Scope and treatment level		$\overline{2}$
	1.3. Notation and terminology		2
	1.4. Galton's concept of regression		4
	1.5. The modern concept of regression		5
2.	Bivariate Normal and Least Squares Regression		7
	2.1. The two cases of classical regression		7
	2.2. Bivariate normal regression		7
	2.3. An example of bivariate normal regression		9
	2.4. Regression on a mathematical variable		12
	2.5. Examples of regression on a mathematical variab	le	14
	2.6. Some practical aspects of least squares regression		19
	2.7. Adequacy of the simple least squares model		24
3.	Law-like Relationships in the Presence of Random		
	Variation		29
	3.1. Functional and structural relationships		29
	3.2. Comments on functional relationships		33
	3.3. Behaviour of the maximum likelihood estimato	rs	
	with unknown variances		37
	3.4. Functional relationships when there is informati	on	
	on departure variance		39
	3.5. Structural relationships		44
	3.6. Types of relationship arising in practice		45

CONTENTS

4	Reg	cression and Functional Relationship with Heterogeneous	
	and	Correlated Departures	47
	4.1.	Removal of departure restrictions in regression	47
	4.2.	Correlated departures in functional relationships	51
	4.3.	Regression models of the second kind	54
		Some special patterns of correlations	58
	4.5.	Non-linear relationships and transformation of data	59
5.	Mul	tiple Regression	63
	5.1.	Multivariate regression	63
		Multivariable regression	65
	5.3.	Orthogonal regressors	72
		Polynomial and other special linear regression models	74
		Choice of regressors	75
	5.6.	Multiple regressions with correlated departures	79
	5.7.	Models of the second kind	82
6.	Mul	tidimensional Functional Relationships and Canonical	
	Ana	dysis	85
	6.1.	Multiplicity of functional relationships	85
		Determination of a single linear functional relation-	-
		ship	88
	6.3.	Confidence limits for a single relationship	89
	6.4.	Determination of more than one linear relationship	91
		Canonical analysis	92
7.	Som	ne Applications of the Classical Regression Model	95
	7.1.	The use of regression analysis	95
		Inverse estimation	97
		Comparison of regression equations	99
			100
		~	104
	7.6.		106
			108
	7.8.	**	112
			117
7	.10.	T	118

CONTENTS

8. I	Law-like Relationships in Practice	121	
8	3.1. Number and type of relationships	121	
8	3.2. Regression with arbitrary choice of regressors	133	
8	3.3. How linear relationships may arise in practice	134	
	3.4. Other methods of estimating functional relationships	135	
9. N	discellaneous Topics in Linear Regression	138	
9	0.1. The probit regression line	138	
9	2.2. Berkson's model with controlled variables	143	
9	2.3. Bias due to ignoring correlations between departures	144	
9	9.4. Some topics omitted	147	
10. Non-linear Models		149	
10	0.1. Non-linear least squares	149	
10	2.2. Estimation of parameters in a rational function	152	
10	0.3. Fitting the generalized logistic curve	155	
10	9.4. Relaxation of assumptions about departures	158	
10	2.5. Curve fitting and approximation theory	158	
References			
Auth	Author Index		
Subje	ect Index	169	