Contents

1.	PRELIMINARIES	1
	1. Set Theory	1
2	2. Topological Vector Spaces	2
	3. Measures	10
4	4. Differentiable Functions	18
2.	THE THEORY OF DISTRIBUTIONS	20
	1. Introduction to the Concept of a Distribution	20
9	2. Study of Certain Function Spaces	22
	3. Differentiation of Distributions	33
4	4. The Direct Product. The Multiplicative Product	38
	5. Involution and Convolution	41
(6. Further Remarks	50
3.	THE FOURIER TRANSFORM	52
	1. Further Remarks Regarding Measures	52
-	2. The Fourier Transform of Bounded Measures	57
	3. Differentiability of the Fourier Transform	58
	4. The Fourier Transform of the Derivative of a Function	58
į	5. Plancherel's Theorem	59
(6. Extension of the Fourier Transform to L ²	62
,	7. The Fourier Transform of Infinitely Differentiable	
	Functions of Rapid Decrease	64
	8. Tempered Distributions	65
9	9. Differentiation of Tempered Distributions	66
10	0. The Fourier Transform of Tempered Distributions	67
	1. Multipliers in S and S'	69
1	2. Involutions, The Convolution Product	70
1	3. Applications to the Fourier Transform of a Bounded	
	Measure	75
1	4. The Fourier Transform in Several Variables	76
	Cormulas	77

x Contents

4. THE LAPLACE TRANSFORM	79
1. The Laplace Transform of Measures with Positive	
Support	79
2. The Laplace Transform of a Distribution	86
3. Inverse-Transform Formulas	89
4. Initial-Value and Final-Value Theorems	93
5. Applications of the Laplace Transform	98
6. The Laplace Transform of Vector-Valued Functions	102
Table of Laplace Transforms	103
5. ELEMENTS OF PROBABILITY THEORY	105
1. Measures in a Vector Space	105
2. Probability Distributions	106
3. Random Variables	110
4. Descriptive Elements of a Probability Distribution	113
5. Geometric Study of Scalar Random Variables	120
6. Stochastic Independence of Random Variables	126
7. Convergence of Probability Distributions and Random	
Variables	133
Table of the Normalized Gaussian Distribution	135
6. MARKOV CHAINS	136
1. Definition of Markov Chains. Graph-Theory Concepts	136
2. Spectral Analysis of Stochastic Matrices	140
3. Asymptotic Behavior	151
7. SECOND-ORDER STATIONARY RANDOM PROCESSES	155
1. Functions of Positive Type. Bochner's Theorem	155
2. Unitary Representations of R in a Hilbert Space	159
3. Second-Order Stationary Random Processes	166
4. Convolutions on a Stationary Process of the Second On	
5. Extension of a Convolution	173
6. Generalizations. Poisson Processes	179
8. LINEAR SERVO SYSTEMS	189
1. Description of Stationary Linear Systems	
2. Control Systems	189
3. Stability	198
4. Gain Control	201
5. Compensation and Anticipation	$\begin{array}{c} 208 \\ 212 \end{array}$
	214
9. FILTERING, PREDICTION, ANTICIPATION	215
1. Systems with Random Inputs	215
2. Filtering and Prediction. The Wiener-Hopf Equation	218
3. Solution of the Wiener-Hopf Equation	220
4. Anticipation	227
10. DISCRETE SYSTEMS, PART I	228
1. Definitions and Notations	228
2. The Fourier Transformation	233

Contents	xi
3. Differentiation. Convolutions. Involutions4. Relationships Between Harmonic Analysis on R and	238
Harmonic Analysis on T or Z	243
11. DISCRETE SYSTEMS, PART II	252
1. The Laplace Transform of a Unilateral Sequence	252
2. Sequences of Positive Type	258
3. Unitary Representations of Z in a Hilbert Space	259
 Stationary Random Processes of the Second Order Discrete Servo Systems 	262 266
6. Sampling. Blocking	268
12. CONVEX SETS	273
1. Definitions and Elementary Properties	273
2. Convex Sets in Topological Vector Spaces	276
3. Separation of Convex Sets	280
4. Support Hyperplanes and Extremal Points	283
5. Facets. Asymptotic Cones	285
6. Convex Functions	288
13. PROGRAMMING PROBLEMS	290
1. Statement of the Problem and General Notations	290
2. First-Order Conditions	291 305
Appendix	
14. LINEAR PROGRAMMING	308
1. Preliminaries	308
2. The Simplex Method	310
3. Duality 4. Parametrization	320 323
15. DYNAMIC PROGRAMMING	327
1. Exposition of the Method	$\frac{327}{331}$
2. An Example	
16. MARKOV CONTROL SYSTEMS	339
1. Markov Systems with Gain	339
2. Markov Systems with Control and Gain	343
 Markov Systems with Targets and Transition Costs Markov Systems with Controls, Targets, and Transition 	349
Costs	351
17. MINIMUM-TIME CONTROL OF LINEAR SYSTEMS	360
1. Discrete Systems	360
2. Continuous Systems	365
18. PONTRYAGIN'S PRINCIPLE	379
1. Review of Differential Equations	379
2. The Problems of Optimum Control	381

xii

Contents

3. The Case of a Fixed Horizon and a Free Final State	382
4. The Case of a Fixed-Horizon Final Criterion with	
Relations on the Final State	387
5. The Parametric Method. The Case of an Undetermined	
Horizon	397
6. The Case of an Integral Criterion	401
Appendix	403
BIBLIOGRAPHY	
INDEX	