Contents

1.1. 1.2. 1.3. 1.4. 1.5.	Probability 6 The Brownian Motion Process $W(t)$ 17 The Jump Process $\pi(t)$ 22 Mean and Variance Propagation in Stochastic Differential Equations Kalman Filtering and Its Extensions 33	27
2.	Stochastic Control and Dynamic Programming	
2.1.	The Principle of Optimality 42	44
2.2. 2.3.	The Dynamic Programming Equation for a $W(t)$ -Driven Process The Dynamic Programming Equation for a $\pi(t)$ -Driven Process	50
2.4.	The Dynamic Programming Equation with Parameter Uncertainty	53
2.5.	Finding Optimal Stochastic Controls Directly 58	55
2.6.	Control with Probability Criteria 61	
2.7.	Myopic Bayes Stochastic Problems and Nonlinear Programming	65
2.8.	Values, Strategies, and Policy Iteration 68	
3.	Key Results in the Deterministic Theory of Resource Exploitation	
3.1.	Classification of Resource Problems and the Concept of Utility	74
3.2.	Exploitation of an Exhaustible Resource: Optimal Extraction Policy and Price Dynamics 79	
3.3.	Exploitation of a Renewable Resource: Optimal Harvest Rates and Price Dynamics 85 Appendix A: A Review of the Calculus of Variations and Optimal Control Theory 87	

xiii

1. Discrete and Continuous Stochastic Processes

Preface

Introduction

ix Acknowledgments viii CONTENTS

4.	Exploration for and Optimal Utilization of Exhaustible Resources
4.1.	Exploration for Exhaustible Resources 94
4.2.	Utilization of an Uncertain Resource without Learning 107
4.3.	Utilization of an Uncertain Resource with Learning
4.4.	Optimal Exploration for and Exploitation of an Exhaustible Resource 121
4.5.	Price Dynamics and Markets for Exhaustible Resources 127
	The Dynamics and Francisco
E	Exploration, Observation, and Assessment
5.	·
	of Renewable Resource Stocks
5.1.	Introduction to the Theory of Line Transects 132
5.2.	Surveys of Fish Stocks 138
5.3.	Model Identification for Aggregating Fisheries 148
5.4.	Search Effort and Estimates of Stock Size 158
6.	Management of Fluctuating Renewable Resource Stocks
6.1.	The Allocation of Fishing Rights 170
6.2.	Harvesting a Randomly Fluctuating Population 175
6.3.	Dealing with Parameter Uncertainty in Managed Populations 188
6.4.	Price Dynamics in Renewable Resource Markets 194
6.5.	Optimal Trade-off between Economic Return and the Risk of Undesirable
0.5.	Events 198
7.	Management of Mixed Renewable and Exhaustible
7.	
	Resource Systems: Agricultural Pest Control
7.1.	The Operational Formulation: Cotton in California 204
7.2.	Models for Pest Population Dynamics 206
7.3.	Models with Population Genetics 210
7.4.	The Single-Season Economic Optimization Problem 214
7.5.	The Multiseason Economic Optimization Problem 218
8.	Introduction to Numerical Techniques
8.1.	Newton's Method 221
8.2.	Sequence and Series Acceleration Techniques 226
8.3.	Solving Stochastic Differential Equations Numerically 228
8.4.	Some Numerical Considerations for DPEs 234
	References 239
	11010101000 207

Index 251