Contents

6 9

71

76

82

89

99

103 105

Chapter I

§ 2. Automorphic forms

§ 1. Algebraic and arithmetic results

§ 2. The Maass-Selberg relations

§ 6. Analytic continuation to C - {o}

§ 8. Boundedness of c for $Im(z) \rightarrow \infty$

§ 7. Analytic continuation: the point O

§ 4. Further preparation of the analytic continuation

§ 5. Analytic continuation of $\underline{c}(z)$ and E(z:g): first step

 \S 3. The functions E_h

§ 3. Inequalities. Statement of the main lemma

§ 4. The space of cusp forms	12
§ 5. A theorem of Langlands	16
§ 6. Proof of Theorem 1	1 7
§ 7. Proof of the main lemma	21
Chapter II	
§ 1. Inequalities	24
§ 2. Eisenstein series	26
§ 3. The functions E _f	31
§ 4. The constant term of the Fourier series of EA	33
\S 5. The constant term of E_{Λ} (P_1 and P_2 associate)	39
§ 6. Orthogonality and density of the E	45
§ 7. The adjoint of c(s:A)	49
§ 8. Automorphic forms of type q	52
Chapter III	
§ O. Introduction	54
§ 1. Statement of Theorem 6	54
§ 2. Proof of Theorem 6	57
§ 3. Consequences of Theorem 6	64
§ 4. Langland's lemma for arbitrary q	65
Chapter IV	
	69
\S 1. A partition of G/Γ	09

Chapter V

§ 1. Some preparation

§ 2. Statement of Theorems 8 and 9

§ 3. First part of the proof of Theorem 8	114
§ 4. End of the proof of Theorem 8	122
§ 5. Proof of Theorem 9	128

109

112