CONTENTS

1.	The Model	7
	1.1 Practical motivations	7
	1.2 Formulation of the model and a more detailed summary	10
2.	Basic Results in Linear Estimation Theory	14
	2.1 The discrete observation case	14
	2.2 The continuous observation case	16
	2.3 The Wiener-Hopf integral equation	21
3.	Classical Experimental Design	27
	3.1 Basic notions of experimental design in the linear uncorrelated regression model	27
	3.2 Whittle's equivalence theorem and iterative procedures	32
	3.3 Further examples for classical (or convex) designing in the uncorrelated case	39
	3.4 Some examples for classical designing in the correlated case	42
4.	Effective Observation Methods for Estimation of Expectation	49
	4.1 Introductory remarks and examples	49
	4.2 Continuous designs and continuous BLUE	52
	4.3 Theorem of Grenander	55
	4.4 Application of Whittle's theorem	57
	4.5 Iterative procedures	61
	4.6 Approximative approach	64
5.	Effective Observation Methods for Least Squares Estimation	70
	5.1 Why ISE - some arguments	70
	5.2 Breakdown of classical designing	71
	5.3 Modified LSE and approximative approach	73
	5.4 Discretization of continuous designs	79
6.	Effective Observation Methods for the BLUE	83
	6.1 Introductory remarks	83
	6.2 Approximative approach for the continuous BLUE	85
	5.3 The results of Sacks and Ylvisaker for random processes	89

6.4 Some results for random fields	94
6.5 Exact optimal designs	100
6.6 Iterative procedures	106
6.7 Remarks on Whittle's theorem	111
7. Effective Observation Methods for Best Linear Prediction	114
7.1 Best linear prediction	114
7.2 Experimental design for linear prediction	119
7.3 Kriging	125
7.4 Experimental design for Kriging: Random sampling	129
8. Bayes Estimation	131
8.1 Linear Bayes estimation	131
8.2 Proper Bayes estimation	136
8.3 Experimental design for the linear Bayes estimator	137
9. On the Choice of the Experimental Region	139
9.1 Some theoretical results	139
9.2 Construction of V*	144
10. Unknown Covariance Function	150
10.1 Continuity arguments	150
10.2 Minimar- and Bayes-approach	152
10.3 Estimated covariance function	154
Effective Observation Methods for Other Types of	
Random Processes	156
11.1 Likelihood, Fisher-information, designing problems	156
11.2 Diffusion processes	159
11.3 Point processes	164
Appendix	167
References	172
Rossary	180
Index	4.02