CONTENTS

0. Introduction

0.	Introduction		1
	0.1.	The aim of the book, 1	
	0.2.	About the merits of asymptotic expansions in	
		statistical theory, 2	
	0.3.	Why a special volume on asymptotic expansions	
		of second order? 5	
	0.4.	Methodological considerations, 8	
	0.5.	The main results, 10	
	0.6.	Notations, 14	
1.	Diffe	rentiability of paths	18
	1.1.	Introduction, 18	
	1.2.	First order differentiability, 20	
	1.3.	First order differentiability with rates, 29	
	1.4.	Some technical lemmas for DCC	
		bility, 34	
	1.5.	Local asymptotic normality with rates, 40	
	1.6.	Second order differentiability of paths, 45	
•	1.7.	Second order DCC- and Hellinger differentia-	
		bility, 52	
	1.8.	Differentiability in b-mean, 54	
2.	Methodological remarks about derivatives and tangent		
	spaces		57
	2.1.	Introduction, 57	
	2.2.	Derivatives of derivatives, 62	
	2.3.	Reparametrizations, 65	
	2.4.	Uniqueness of second derivatives, 68	
	2.5.	A product tangent space, 77	

3.	Examp	les of derivatives and tangent spaces	86
	3.1. 3.2.	Parametric families, 86 Full families, 92	
		Families of symmetric probability measures,	
	3.4.	Product measures, 101	
4.	Differentiability of functionals		105
	4.1.	Basic concepts, 105	
	4.2.	Paths through vector fields, 110	
	4.3.	Second gradients of real-valued functionals,	
	4.4.	Canonical gradients, 119	
	4.5.	Second gradients for functions of functionals,	
	4.6.	Historical remark, 126	
5.	Examp	les of functionals and gradients	128
	5.1.	Parametric families, 128	
	5.2.	Von Mises functionals, 136	
	5.3.	Minimum contrast functionals, 140	
	5.4.	L-functionals, 147	
	5.5.	Quantiles, 149	
6.	Asymp	totic expansions for power functions	153
	6.1.	Auxiliary results, 153	
	6.2.	The second order envelope power function	
		for simple hypotheses, 161	
	6.3.	The second order envelope power function	
		for composite hypotheses, 172	
	6.4.	First order efficient test-sequences are	
		usually second order efficient, 179	
	6.5.	Second order efficiency in one direction	
		implies second order efficiency in the half	
		space spanned by this direction over the	
		hypothesis, 182	
	6.6.	Testing hypotheses on functionals, 193	

245

7. Evaluating the performance of estimators

- 7.1. Introduction, 198
- 7.2. Randomized estimators, 199
- 7.3. Concentration, 202
- 7.4. Unbiasedness, 205
- 7.5. Spread, 209
- 7.6. Comparisons on families of probability measures. 212
- 7.7. Multidimensional estimators, 214
- 7.8. Centering multidimensional probability measures, 217
- 7.9. Asymptotic comparisons, 219
- 7.10. Comparing multidimensional Edgeworth measures. 227
- 7.11. Comparing one-dimensional Edgeworth measures. 231
- 7.12. Functions of efficient estimators are efficient, 235
- 7.13. Joint efficiency and componentwise efficiency, 242
- 8. Asymptotic bounds for the performance of confidence procedures and estimators
 - 8.1. How to measure the quality of a confidence procedure, 246
 - 8.2. Second order bounds for the concentration of confidence bounds and median unbiased estimators, 249
 - 8.3. Second order bounds for the concentration of confidence bounds and estimators, the distribution of which admits an asymptotic expansion, 255
 - 8.4. Interpretation of concentration bounds in terms of spread, 262
 - 8.5. On local uniformity, 266
 - 8.6. Second order bounds without local uniformity, 272
 - 8.7. First order efficient confidence bounds (and estimators) are usually second order efficient, 282

9.		ssible forms of Edgeworth expansions for otically efficient estimator-sequences	288
	9.1.	·	200
		Introduction, 288	
	9.2.	The possible forms of Edgeworth expansions:	
	0.3	The general case, 291	
	9.3.	The possible forms of Edgeworth expansions:	
	0.4	A version without local uniformity, 296	
	9.4.	The possible forms of Edgeworth expansions:	
	0 5	Parametric families, 300	
	9.5.	The basic result, 304	
	9.6.	Proof of the basic result for $p = 1$, 306	
	9.7.	Proof of the basic result for arbitrary p, 321	
	9.8.	Examples and counterexamples, 324	
	9.9.	Restriction to subfamilies, 330	
10.	Statis	tics with stochastic expansion	333
	10.1.	Introduction, 333	
	10.2.	Inherent relations for locally uniform	
		stochastic expansions, 335	
	10.3.	Edgeworth expansions for the distribution of	
		a statistic admitting a stochastic expansion,	
	10.4.	Tests based on test-statistics with stochastic	
	-	expansion, 347	
	10.5.	Confidence bounds with stochastic expansion,	
		354	
	10.6.	Estimators with stochastic expansion, 360	
	10.7.	A method for obtaining asymptotically effi-	
		cient estimator-sequences, 369	
	10.8.	Calibration, 372	
	10.9.	Further remarks on randomized tests and	
		confidence procedures, 376	
11.	Examples		382
	11.1.	Parametric families, 382	
	11.2.	Functionals defined for all probability	

measures, 387

11.3. Minimum contrast functionals,

393

	11.4.	Estimating structural parameters in the			
		presence of known nuisance parameters, 400			
	11.5.	Estimating structural parameters in the			
		presence of unknown nuisance parameters, 408			
	11.6.	A special von Mises functional, 419			
	11.7.	Lattice distributions, 425			
12.	Quanti	les: An example of an irregular functional	428		
	12.1.	Introduction, 428			
	12.2.	Bounds for the concentration of confidence			
		bounds, 429			
	12.3.	Confidence rays for quantiles, 432			
	12.4.	A bound of order $o(n^{O})$ without local uni-			
		formity, 438			
	12.5.	Better confidence bounds without local			
		uniformity, 441			
13.	Lemmas		451		
	13.1.	Measurability, 451			
	13.2.	Unimodality, 453			
	13.3.	Probabilistic lemmas, 456			
	13.4.	Moderate deviations and smoothing, 460			
	13.5.	Normal approximation and Edgeworth expan-			
		sions, 464			
	13.6.	Order statistics, 477			
	13.7.	Miscellaneous, 480			
Refe	rences		487		
Noto	tion in	day	498		
Notation index					
Author index					
Subject index					
List	of err	ata for "Contributions to a General Asymp-			

504

totic Statistical Theory"