SUBJECT INDEX

Снарте	R I. Origins, Milestones and Directions of the Finite Element Method— A Personal View	
1.	Introduction	
2.	The origins	
3.	The "variational" approaches via extremum principles	
4.	Some early applications of the finite element method and alternatives	1
5.	Virtual work and weighted residual approaches. Generalised finite element method and other approximations	1
6.	Non-conforming approximation and the patch test as a necessary and sufficient	•
	condition of finite element method convergence	2.
	6.1. Plate bending—Conforming and non-conforming variants	
	6.2. The patch test	2.
	6.3. Diffuse element approximation	2
7.	Higher-order elements and isoparametric mapping. Three-dimensional analysis, plates, shells and reduced integration	30
	7.1. The need governs development—Isoparametric mapping	31
	7.1. The need governs development—isoparametric mapping 7.2. Physics govern theory—The essential development for plates and shells	3
8	Adaptivity and error estimation	3'
	Fluid mechanics and non-self-adjoint problems	4:
	Epilogue	5
Append	x x	5
Referen	NCES	59

Preface	73
CHAPTER I. General Definitions and Problem	75
Introduction	75
1. Basic ideas of finite element methods	75
2. Mesh definition	78
3. Mesh contents	84
4. Mesh structure	87
5. Mesh prescriptions	89
6. Methodology	92
7. Data structure	93
8. Properties and formula about triangles and tetrahedra	94
CHAPTER II. Review of Mesh Generation Methods	97
Introduction	97
9. Manual methods	99
10. Product methods	100
11. Special application methods	103
11.1. Algebraic methods	103
11.2. PDE methods	106
12. Semi-automatic methods	111
13. Automatic methods	114
13.1. Quadtree-octree type methods	114
13.2. Advancing-front methods	117
13.3. Voronoï type methods	120
14. Surfaces	122
CHAPTER III. Automatic Method (1): Advancing-front Type Mesh Generation	127
Introduction	127
15. General principles	128
16. Creation and insertion of an optimal point	130
16.1. Position of a point with respect to the domain	130
16.2. Finding an optimal location	131
16.3. Insertion	134
16.4. Updating the front	135
16.5. Control space	135
16.6. Neighborhood space	137
16.7. Mesh point and element smoothing	139
17. Scheme for the mesh generator	140
18. Applications in the case of a given control	141
10. Application examples	144

72 P.L. George

20. Structures and algorithms	145
20.1. Basic structure	146
20.2. Background structures	146
20.3. Basic algorithms	147
CHAPTER IV. Automatic Method (2): Voronoï Type Mesh Generation	149
Introduction	149
21. General principles	150
22. Connection from points to points	152
22.1. Original insertion point method	153
22.2. Derived insertion point method	156
23. Boundary integrity	158
23.1. The two-dimensional case	158
23.1.1. Creation of the midpoint of every missing boundary edge	158
23.1.2. Local diagonal swapping procedures	160
23.2. The three-dimensional case	162
23.2.1. Creation of the midpoint of all missing edges and creation of a	
point at the centroid of all missing faces	162
23.2.2. Local modifications coupled with possible creation of internal points	163
23.3. Definition of the inside of the domain	166
24. Creation of the field points	168
24.1. Creation and insertion of the internal points	168
24.2. First type method	168
24.3. Second type method	169
24.4. Mesh point and element smoothing	171
25. Scheme for the mesh generator	172
26. Applications in the case of a given control	172
27. Application examples	175
28. Structures and algorithms	179
28.1. Basic structure	179
28.2. Background structures	179
28.3. Basic algorithms	181
References	183
Subject Index	189

Preface	197
CHAPTER I. Introduction	199
1. The physical problem	199
2. The mathematical model	202
3. Remarks on the development of limit analysis	206
CHAPTER II. The Duality Problem	209
4. Why so different from elasticity?	209
5. Existence of the collapse solution	213
5.1. The stress space Σ	216
5.2. The flow space U	217
5.3. The duality of limit analysis	219
5.4. The reduced problem	225
6. Generalizations and variations	227
6.1. Boundary flow constrained to a subspace	227
6.2. Presence of a pre-load	228
6.3. Bounded yield set	228
6.4. Yield conditions for granular materials	229
7. Green's formula in the collapse state	230
CHAPTER III. Discretization by Finite Elements	235
8. Formulation of the discrete problem	235
9. Elements for divergence-free flow	244
10. Bounds and convergence	247
CHAPTER IV. Solution of the Discrete Problem	255
44.0	255
11. General remarks	259
12. Linear programming methods	262
12.1. Solution with the simplex method12.2. Solution with the primal affine scaling algorithm	265
12.2. Solution with the dual offine scaling algorithm	267
12.3. Solution with the dual affine scaling algorithm	272
13. Convex programming methods	276
14. Divergence-free elements14.1. Solution of the primal problem	277
14.1. Solution of the dual problem	278
	282
15. Concluding remarks 15.1. On the solution to the test problem	284
15.1. Of the solution to the test problem	

E. Christiansen

CHAPTER V. Limit Analysis for Plates	285
16. The continuous problem	285
17. Duality of limit analysis	288
18. Discretization of the plate problem	291
19. Solution of the discrete problem	295
References	303
LIST OF SYMBOLS	307
Subject Index	311

PREFACE

Conserved Visited at Language and a Chicago Tona Double of Manda Visited and	
CHAPTER I. Variational Inequalities of the Elliptic Type. Dual and Mixed Variational Approach	319
••	
1. Examples of unilateral boundary value problems	319
2. Preliminaries concerning the approximation of variational inequalities	325
3. Elliptic variational inequalities. Different variational formulations. Existence results	327
Bibliography and comments to Chapter I	347
CHAPTER II. Approximate Solution of Variational Inequalities	349
4. Approximation of the elliptic inequalities	349
4.1. Approximation of the primal formulation	349
4.2. Approximation of mixed formulations	353
Bibliography and comments to Chapter II	361
CHAPTER III. Contact Problems in Elasticity	363
5. Formulation of contact problems	363
5.1. Problems with a bounded zone of contact	365
5.2. Problems with increasing zone of contact	367
5.3. Variational formulations	368
6. Existence and uniqueness of solution	369
6.1. Problem with a bounded zone of contact	370
6.2. Problem with increasing zone of contact	374
7. Contact problems with friction	377
7.1. Definitions and preliminary results	377
7.2. Contact problem with Coulomb's law	380
8. Approximation of contact problems by finite elements. Frictionless case	382
8.1. Approximation of the problem with a bounded zone of contact	383
8.2. Approximation of the problem with an increasing zone of contact	388
9. Approximation of the contact problem with given friction	391
10. Approximation of the Signorini problem obeying Coulomb's law of friction	404
11. Numerical realization of contact problems	411
CHAPTER IV. Contact of Elasto-Plastic Bodies	417
	417
12. Deformation theory	417
12.1. Formulation of Signorini's contact problem in the deformation theory of	417
plasticity	417
12.2. Abstract convergence theorem for the secant modules method	418
12.3. Application to Signorini's contact problems	419 420
13. Contact of perfectly elasto-plastic bodies	420
13.1. Bounded zone of contact	421

13.2. Increasing zone of contact13.3. Solution of approximate problems	424 427
CHAPTER V. Problems of the Theory of Plasticity	431
14. Prandtl–Reuss model of plastic flow	431
15. Plastic flow with hardening	435
16. Solution of the Prandtl-Reuss model by the equilibrium finite-element method	440
16.1. A priori error estimates	442
17. Solution of isotropic hardening using finite elements	445
17.1. A priori error estimates	448
17.2. Convergence in the case of a nonregular solution	454
18. Bibliography and comments to Chapter V	457
CHAPTER VI. Unilateral Problems for Elastic Plates	459
19. Introduction. Statement of the basic problems	459
20. Unilateral displacement problem	461
20.1. Primal approach	461
20.2. A mixed variational formulation for a semicoercive problem	465
21. Unilateral rotation problem	466
22. Inner obstacle problem	468
22.1. A primal approach	468
22.2. A dual approach	469
22.3. A dual approach combined with the penalty method	470
22.4. A mixed formulation by factorization	471
Bibliography and comments to Chapter VI	472
References	473
LIST OF SYMBOLS	479
Subject Index	483

PREFACE

Introduction	497
Mathematical modelling of elastic plates and shells: Classical and asymptotic methods	
Mathematical modelling of elastic rods	499
Mathematical modelling of elastic rods: Asymptotic methods	502
Overview of contents	507
CHAPTER I. Asymptotic Expansion Method for a Linearly Elastic Clamped Rod	511
1. The three-dimensional equations of a linearly elastic clamped rod	512
2. The fundamental scalings on the unknowns and assumptions on the data: The	
displacement approach	515
3. The asymptotic expansion method	519
4. Cancellation of the factors of ε^q , $-4 \leqslant q \leqslant -1$. Some properties of u^0 and u^2 .	
Boundary layer phenomenon	521
5. The weakly clamping conditions. The asymptotic expansion method in the	
displacement approach	530
6. The asymptotic expansion method in the displacement–stress approach	535
7. Characterization of the zeroth order stress term and second order displacement	555
	542
fields: Statement of the theorem	3.2
8. Characterization of the zeroth order stress and second order displacement fields:	554
Proof of the theorem	565
9. Characterization of the second order stress and fourth order displacement fields	575
10. Convergence of the scaled displacements and stresses	313
CHAPTER II. Linear Asymptotic Models. Comparison with Classical Theories	587
11. Asymptotic first order one-dimensional equations of a linearly elastic clamped	
rod. Comparison with Bernoulli-Navier's theory	587
12. Asymptotic second order general model of a linearly elastic clamped rod	592
13. Comparison with Vlassov's beam theory for thick rods	601
14. Comparison with Saint Venant's pure torsion theory	603
15. Comparison with Timoshenko's beam theory. New Timoshenko constants	606
13. Comparison with Timoshenko's ocam theory. New Timoshesia	
CHAPTER III. Asymptotic Modelling in Thin-Walled Rods – An Introduction	621
16. Formal asymptotic approach of bending and torsion properties for rods with a	
	621
thin rectangular cross section	021
17. Convergence and limit problem for Poisson's equation in a thin rectangle with	632
Dirichlet or Neumann boundary conditions	638
18. Convergence of torsion and warping functions for thin rectangular cross sections	0.50
19. Convergence of Timoshenko's functions and constants for thin rectangular cross	641
sections	041

20. Critical rectangular cross sections in Timoshenko's beam theory21. Asymptotic problems in thin-walled beams	650 652
CHAPTER IV. Asymptotic Expansion Method for Nonhomogeneous Anisotropic Rods	657
22. The asymptotic expansion method for anisotropic and nonhomogeneous elastic rods. Applied forces at one end	658
 First order coupled bending-stretching model for anisotropic and nonhomogeneous elastic rods. Convergence results. Fibre-reinforced beams 	665
24. Higher order models for transversely nonhomogeneous isotropic rods	682
25. A general asymptotic model for homogeneous anisotropic rods	697
CHAPTER V. Asymptotic Modelling of Rods in Linearized Thermoelasticity	715
26. The asymptotic expansion method for stationary thermoelastic rods	716
27. Asymptotic justification of an evolution linear thermoelastic model for rods	734
CHAPTER VI. Asymptotic Method for Contact Problems in Rods and Rods with a Variable Cross Section	763
28. Asymptotic derivation of unilateral contact models for rods on a rigid or elastic	764
foundation 29. The asymptotic expansion method for rods with a variable cross section	764 778
CHAPTER VII. Rods with a Multicellular Cross Section. Some Homogenization and	
Asymptotic Results	801
30. The asymptotic model for rods with a multicellular cross section	802
31. Homogenization of the generalized beam theories	812
32. Generalized beam theory of the homogenized material	833
CHAPTER VIII. A Galerkin Type Method for Linear Elastic Rods	847
33. A Galerkin type approximation in linearized beam theory	847
34. A Galerkin type approximation for the multicellular case	862
35. Homogenization of the basis functions	872
36. A Galerkin approximation of the homogenized three-dimensional equations	879
37. The three-dimensional equations for a linearly elastic curved rod	888
38. The curved rod problem posed in a fixed domain	890
39. The Galerkin method for curved rods	898
39.1. The Galerkin method for the straight beam $\tilde{\Omega}^{\varepsilon}_{sb}$	898
39.2. The Galerkin method for the beam $\tilde{\Omega}^{\varepsilon}$	901
CHAPTER IX. Asymptotic Method for Nonlinear Elastic Rods. Stationary Case	909
40. The three-dimensional equations of a nonlinearly elastic clamped rod	909
41. The fundamental scalings on the unknowns and assumptions on the data: the	- 40
displacement approach	912
42. Cancellation of the factors of ε^q , $-4 \leqslant q \leqslant 0$, in the scaled three-dimensional problem	916
43. Identification of the leading term u^0 of the formal expansion	924
44. Existence of the leading term u^0 in the displacement approach	927
45. The displacement-stress approach for the nonlinear case	930
CHAPTER X. Asymptotic Method for Nonlinear Elastic Rods. Dynamic Case	941
46. The three-dimensional equations for the nonlinear elastodynamic case	942

	Contents	491
47.	The asymptotic expansion method for the nonlinear elastodynamic case	944
48.	Computation of the first term in the expansion for the nonlinear elastodynamic	
	case	948
49.	The limit problem for the nonlinear elastodynamic case	952
50.	The general nonlinear elastodynamic case	954

REFERENCES

SUBJECT INDEX

959