Contents

1.	Basic	System Concepts	•	•	•	•	•	1
	1.1	Introduction						1
	1.2	State-Space Representation		•				5
	1.3	Operators						6
	1.4	Linearity					•	9
	1.5	Stationarity						10
	1.6	System Equivalence						10
	1.7	Controllability and Observability .		•	•	•		11
2.	Anal	ysis in Discrete-Time Domain	•	•	•		•	14
	2.1							14
	2.2	System Weighting Sequence .	•					14
	2.3	Transmission Matrices			•		•	17
	2.4	Characterization in Terms of State	Varia	bles		•		19
	2.5	Formulation of State Equations				•		22
	2.6	Transformation of Coordinates				•		27
	2.7	Iordan Canonical Form .						30
	2.8	Conditions for Controllability and	Obser	vabili	ty	•	•	32
3.	Tran	sformation Calculus						36
	3.1	Introduction			•			36
	3.2	The Generating Function .						36
	3.3	Transformation of the Convolution	Sum	natio	n	•	•	39
	34	The 7 Transform				•	•	41
	3.5	Determination of Z Transforms				•	•	42
	3.6	The Inverse Transformation .			•	•	•	47
	3.7	Inversion by Partial-Fraction Expan	nsion		•		•	48
	3.8	The Inversion Integral			•	•	•	50
	39	Initial-Value Determination for a ζ	Tran	sforn	1	•	•	54
	3.10	Intermediate-Value Determination 1	or a	∠ Ira	nstori	m	•	55
	3 11	Final-Value Determination for a Z	Trans	storm		•	٠	55
	3.12	Example of a Problem in Probabilit	ty The	eory	•	•	•	56
	3.13	\mathcal{Z} Transform of the Product $f(k)$ $h(k)$	k)	•	•	•	•	57
		Parseval's Theorem			•	•	•	58
	2 15	Polation to the Laplace Transform						59

xii Contents

. :	Samp	oling of Continuous-Time Functions	•	•			•	66
	4.1	Introduction			•		•	66
	4.2	Laplace Transform of a Sampled Con	ntinuo	ous-Ti	me			
		Function					•	66
	4.3	Alternate Form of $\mathcal{L}[f(t;T)]$.			•		•	71
	4.4	The Sampling Theorem					•	73
	4.5	Extensions of the Sampling Theorem					•	76
	4.6	Pariodic Nonuniform Sampling .						77
	4.7	Uniform Sampling of a Function and	d Its I	Deriva	tives			82
	4.8	Nonuniform Sampling				•	•	85
	4.9	Z Transforms for Shifted Time Func	ctions					89
	4.J 4.10	Multidimensional Sampling						92
		,					•	97
5.	Poly	nomial Interpolation and Extrapolatio	on .	•	•	•	•	
	5.1	Introduction						97
	5.2				•			97
	5.3	Lagrangian Polynomials				•		98
	5.4	Approximation Error				•		102
	5.5	Newton-Gregory Extrapolation .			•			103
	5.6	Zero-Order Extrapolation						106
	5.7	First-Order Extrapolation		•				106
	5.8	Second-Order Extrapolation					•	108
	5.9		of Ext	trapol	ation			_
	5.5	Functions	•					108
		The Thermote	Tima	Innut	e			112
6.	Con	tinuous-Time Systems with Discrete-	1 me	Inbac	3	•	•	112
	6.1	Introduction	•		•	•	•	
	6.2	Transition Equation of a Continuou	ıs-Tin	ne Sys	stem		•	112 115
	6.3	System Transition Equation for Dis	crete-	Time	Inpu	ts	•	
	6.4	Systems Characterized by Transfer	Funct	ions	•	•	•	118
	6.5	Approximate Inversion of $Y(s)$	•	•	•	•	•	119
	6.6	Determination of Samples of Outpu	t, y(k)	(T)	٠	•	•	120
	6.7	Determination of Output at Increas	ed Sa	mplin	ig Ra	tes	•	122
	6.8	Exact Inversion of $Y(s)$.				•	٠	124
	6.9	Determination of Output by Means	s of M	Iodific	$\operatorname{ed} Z$			100
		Transform	•	•	•	•	•	129
_	G -	l. J D. to Control Systems			_			13
7		npled-Data Control Systems .	•	•	•	•		13
	7.1	Introduction	•	•	•	•	•	13
	7.2	Block Diagram Representation	•	•	•	•	•	13
	7.3	Signal Flow Graph Analysis	, Data	Creater	•	•	•	14
	7.4	Transition Equations for Sampled-	Data	Syste	1115	•	•	1-7

Contents	xiii
7.5 Illustrative Example	149
7.6 Special Cases of Sampling and "Hold" Extrapolation	154
7.7 System Stability	157
7.8 Stability of an Equilibrium State	158
7.9 Stability of Linear, Stationary Systems	162
7.10 Application of Liapunov's Theorem	163
7.11 Stability in the Presence of an Input	168
7.12 Reducible Nonstationary and Nonlinear Systems .	169
7.13 Stability Criteria	171
8. Discrete Stochastic Processes	178
8.1 Introduction	178
8.2 Definitions of Basic Terms	179
8.3 System Relations for the Correlation Sequences .	182
8.4 Discrete-Process Spectral Density Functions	182
8.5 System Design for Minimum Mean-Square Error .	185
8.6 Stochastic Finite-State Systems	190
8.7 Types of Markov Systems	195
8.8 Markov Systems with Cost Functions	198
8.9 Controllable Markov Systems	201
8.10 Optimum Control of Markov Systems	202
Appendix A Numerical Method for Z-Transform Inversion .	213
Appendix B Z-Transform Tables	216
Problems	221

INDEX

237