Contents

Chapter I EARLY DEVELOPMENTS: IDEAL GAMES

- A. INTRODUCTION, 1
 - 1-1. "Three" Meanings of Probability, 2
 - 1-2. Historical Perspective, 6
 - B. CLASSICAL (A PRIORI) PROBABILITY, 8
 - 1-3. Definition of Classical Probability, 8
 - 1-4. Probability Combinations, 9

Mutually exclusive events, 10

Independent events, 10

Compound events: general addition theorems, 11 Conditional probability: multiplication

theorem, 12

- 1-5. Inferred Knowledge, 17
- 1-6. Problems, 20
- 1-7. Combinatorial Analysis, 23

Permutations, 23

Stirling's formula, 24

Sampling without replacement, 26

Sampling with replacement, 26

Combinations: binomial coefficients, 27

Binomial distribution formula, 30

Multinomial coefficients, 35

Multinomial distribution formula, 37

xii Contents

Sampling from	subdivide	d populai	tions	without
replacement:	lottery	problem	and	bridge
hands, 39				

1-8. Classical Probability and Progress in Experimental Science, 41

> Applications in statistical mechanics, 42 Classical statistics, 43

Quantum statistics: bosons and fermions, 43

1-9. Problems, 45

C. EXPERIMENTAL (A POSTERIORI) PROBABILITY, 40

1-10. Definition of Experimental Probability, 49

Number of "equally probable outcomes"

meaningless, 51

1-11. Example: Quality Control, 51

1-12. Example: Direct Measurements in Science, 52

Chapter 2 DIRECT MEASUREMENTS: SIMPLE STATISTICS 55

- A. MEASUREMENTS IN SCIENCE: ORIENTATION, 55
 - 2-1. The Nature of a Scientific Fact, 55
 - 2-2. Trial Measurements and Statistics, 56
 - 2-3. Random Variation, 59
 - 2-4. Probability Theory in Statistics, 61
 - 2-5. Computed Measurements, 62
 - 2-6. Conclusions, 63

B. BASIC DEFINITIONS: ERRORS, SIGNIFICANT FIGURES, ETC., 63

2-7. Types of Errors, 64

Random (or accidental) error, 64

Systematic error, 67

Precision and accuracy, 68

Discrepancy, 69

Blunders, 69

2-8. Significant Figures and Rounding of Numbers, 69

C. FREQUENCY DISTRIBUTIONS AND PRECISION INDICES, 71

2-9. Typical Distributions, 72 Terminology: types of distributions, 72

2-10. Location Indices, 76

Median, 76

Mode (most probable value), 76

Mean (arithmetic average) m and μ, 76

2-11. Dispersion Indices, 79

Range, 79

Quantile, 79

Deviation (statistical fluctuation), 79

Mean (average) deviation, 80

Experimental standard deviation s, 82

Moments, 84

Variance o2: "universe" or "parent" standard deviation o, 86

Degrees of freedom, 89

Variance: binomial model distribution, 91

Standard deviation in the mean (standard

error) s_m , 92

Skewness, 94

Other dispersion indices, 95

Conclusions, 97

2-12. Problems, 98

Chapter 3 STATISTICS OF MEASUREMENTS IN **FUNCTIONAL RELATIONSHIPS**

101

Method of Maximum Likelihood, 103 3-1. p in the binomial distribution, 105

 μ and σ in the normal distribution, 106 μ in the Poisson distribution, 107

Instrumental parameter, 107

Precision in the maximum likelihood estimate. 108

Standard error σ_m , 109

Propagation of Errors, 109 3-2.

Nonindependent errors: systematic errors, 110

Random errors, 111

Mean (and fractional mean) deviation, 113

Standard (and fractional standard) deviation, 114

Sum or difference, 116

Product or quotient: factors raised to various powers, 116

Other functions, 118

3-3. Different Means, 118

Weighted mean, 118

Weighted dispersion indices, 120

Consistency of two means: the t test, 120

Comparison of precisions in two sets of measure-

ments: the F test, 123

xiv

xiv		Contents
	3-4.	Curve Fitting: Least-Squares Method, 126
		Best fit of a straight line, 127
		Straight line through origin, 131
		Best fit of parabola, 132
		Best fit of a sine curve, 133
		Criterion for choice of functional relation, 133
	3-5.	Justification of Least-Squares Method from
		Maximum Likelihood, 135
	3-6.	Data Smoothing, 139
	3-7.	<u> </u>
		Correlation coefficient, 140
		Covariance, 143
		Interpretation, 144
	3-8.	Inefficient Statistics, 146
		Location index, 147
		Dispersion indices, 147
		Standard deviation in the mean (standard error), 148
		Examples, 148
	3-9.	Conclusions and Design of Experiments, 148
		. Summary, 150
		. Problems, 150
Chapter 4	NORM	1AL PROBABILITY DISTRIBUTION 156
	4-1.	Derivation of the Normal (Gauss) Probability
	7-1.	Density Function, 157
		Shape of the normal frequency curve, 161
		Normalization, 161
	4-2.	
	4-2. 4-3.	rr,
	4 -5.	Measurements, 164
		Elementary errors, 164
		Mechanical analog for Bernoulli-type elementary
		errors in continuous sample space, 166
	4.4	Characteristics of elementary errors, 168
	4-4.	The Error Function, 169
	4.5	Standardized variables, 169
	4-5.	Precision Indices, 170
		Mean deviation, 170
		Standard deviation, 172
		Probable error, 173
		Confidence limits in general, 173
	4-6.	Probability for Large Deviations, 175
		Rejection of a "bad" measurement, 175
		Chauvenet's criterion for rejection, 176
	4-7.	Test of a Statistical Hypothesis: Example, 178

XV **Contents**

Skewness and kurtosis, 183

The χ^2 test, 184

Chapter 5

4-8. Test of Goodness of Fit of a Mathematical Model, 180 Graphical comparison of frequency curves, 181 Graphical comparison of cumulative distribution

functions: probability paper, 181

4-9.	Conclusions, 191	
4-10.	Problems, 192	
POISSO	ON PROBABILITY DISTRIBUTION	195
5-1.	Introduction, 195	
	Rare events, 196	
5-2.	Derivation of the Poisson Frequency Distribution	
	Function, 197	
	Shapes of Poisson frequency distributions, 198	
	Poisson to normal distribution, 199	
	Normalization, 201	
	Errors in the Poisson Approximation, 201	
5-4.	Precision Indices, 202	
	Standard deviation, 202	
	Fractional standard deviation, 203	
	Standard deviation in a single measurement, 204	
	Probable error, 206	
	Skewness, 207	
5-5.		
	Two mechanical analogs, 209	
5-6.	Goodness of Fit, 211	
	Spatial distribution, 212	
5-7.	Examples of Poisson Problems, 213	
	Deaths from the kick of a mule, 213 Radioactive decay, 215	
	Counts per unit time: precision, 218	
	More examples, 221	
<i>E</i> 0	Composite of Poisson Distributions, 224	
3-8.	Measuring with a background, 224	
	Precision, 225	
5.0	Interval Distribution, 227	
J-9.	Dispersion indices, 229	
	Resolving time: lost counts, 229	
	Coincidence counting, 230	
	Conclusions, 231	
5-10	Problems, 231	
		239
	MARY	
GLOSSARY		241
INDE	X	249