CONTENTS | Note from the Series Editor
Foreword
Preface | | iv
V
Vii | |--|---|----------------| | | | , | | 1 | WHY STATISTICS? | 1 | | 1.1 | Statistical Quality Control | 1 | | 1.2 | Data: Statistics for Action | 2 | | 1.3 | Patterns of Variation | 3 3 | | 1.4 | Wide Applicability | 5
4 | | 1.5 | Summary | 4 | | 2 | CHARACTERISTICS OF DATA AND HOW TO DESCRIBE THEM | 5 | | 2.1 | Two Basic Characteristics of Data | 5 | | 2.2 | Measuring Average Level and Variability | 6 | | 2.3 | Condensing Data into a Frequency Table | 10 | | 2.4 | Sample Data versus Population | 15 | | 2.5 | Interpretation of x and s_ | 17 | | 2.6 | Efficient Calculation of x and s: Coding | 18
22 | | 2.7 | Curve Shape | 23 | | 2.8 | Population versus Sample Characteristics | 24 | | 2.9 | Summary
Problems | 24 | | | Reference | 26 | | 3 | SIMPLE PROBABILITY | 27 | | 3.1 | Likelihood of an Event Occurring | 27 | | 3.2 | Occurrence Ratio | 28 | | 3.3 | Example 1 and Probability Laws | 30 | | 3.4 | Example 2 and Equal Likelihood, Dependence | 34 | | 3.5 | Example 3, Another Lot Probability Problem | 36 | | 3.6 | Counting Samples: Combinations and Permutations | 38 | | 3.7 | Approach of Occurrence Ratio d/n = p to p' | 41 | | 3.8 | Further Examples of Probability | 43
47 | | 3.9 | Summary | 47 | | | Problems | • • | | 4 | THREE BASIC LAWS FOR ATTRIBUTE DATA | 49 | | 4.1 | Counted Data: Defects or Defective Pieces in a Sample of n Pieces | 49 | x Contents | 4.2
4.3
4.4*
4.5 | The Binomial Distribution for Defectives The Poisson Distribution for Defects The Hypergeometric Distribution for Defectives Summary Problems References | 50
58
66
70
71
72 | |---|--|---| | 5 | CONTROL CHARTS IN GENERAL | 75 | | 5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11 | Running Record Charts of Performance Performance Varies Unusual Performance Calls for Action What Is Unusual? Two Kinds of Causes Control Charts Interpretations of Points and Limits Two Purposes of Control Charts Process in Statistical Control Advantages of a Process in Control Summary Problems References | 75
78
78
79
80
81
84
85
86
86
87
88 | | 6 | CONTROL CHARTS FOR ATTRIBUTES: PROCESS CONTROL | 91 | | 6.1
6.2
6.3 | Charts for Defectives or Nonconforming Pieces
Charts for Defects
Summary
Problems | 91
109
120
122 | | 7 | CONTROL CHARTS FOR MEASUREMENTS: PROCESS CONTROL | 127 | | 7.1
7.2
7.3 | Two Characteristics We Desire to Control An Example, \bar{x} , R Charts for Past Data An Experimental Example, \bar{x} , R Charts for Past Data Some Population Distributions for Sampling | 127
129
133 | | 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11 7.12 7.13 | Experiments The Normal Distribution Control Charts for x and R, Standards Given Control Charts for Standard Deviations, s Comparison of a Process with Specifications Continuing the Charts When and How to Set Standard Values Examples Some Background of Control Charts | 140
142
147
148
151
156
157
158
167
169
170 | | 8 | FURTHER TOPICS IN CONTROL CHARTS AND APPLICATIONS | 181 | | 8.1
8.2 | Types of Sampling
Tool Wear, Slanting Limits | 181
192 | Contents xi | 8.3
8.4
8.5*
8.6*
8.7 | Charts for Individual x's and Moving Ranges Percent Defective of Bulk Product Average Run Length for a Point Out Chart for Demerits, Rating Quality Some Typical Applications Problems References | 197
200
202
206
208
219
222 | |--|---|--| | 9 | ACCEPTANCE SAMPLING FOR ATTRIBUTES | 223 | | 9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8 | Why Use a Sample for a Decision on a Lot? Levels of Inspecting or Testing a Lot The Operating Characteristic of a Plan Attribute Sampling Inspection Characteristics of Single Sampling Plans Double Sampling Plans and Their Characteristics Acceptance Sampling for Defects Finding a Single Sampling Plan to Match Two Points on the OC Curve Some Principles and Concepts in Sampling by Attributes Summary Problems References | 223
224
225
225
226
234
244
245
247
256
256
257 | | 10 | SOME STANDARD SAMPLING PLANS FOR ATTRIBUTES | 259 | | 10.1
10.2
10.3
10.4
10.5*
10.6* | The ABC Standard or Military Standard 105D The Dodge-Romig Sampling Tables Other Sampling Inspection Plans Continuous Sampling Plans Chain Sampling Plan, ChSP-1 Skip-Lot Sampling Plan, SkSP-1 Summary Problems References | 259
294
296
297
300
302
304
304 | | 11 | SAMPLING BY VARIABLES | 307 | | 11.1
11.2 | Knowledge of Distribution Type
General Aim: To Judge Whether Distribution
Is Satisfactory | 308
309 | | 11.3 | Decisions on Lot Mean, Known σ, Normal Distribution | 309 | | 11.4
11.5
11.6
11.7
11.8 | Decisions on Lot by Measurements, σ Unknown,
Normal Distribution
Single-Sample Test on Variability
Description of Military Standard MIL-STD 414
Checking a Process Setting
Summary | 320
322
324
327
328
329 | | | Problems
References | 331 | xii Contents | 12 | TOLERANCES FOR MATING PARTS AND ASSEMBLIES | 333 | |--|--|--| | 12.1
12.2
12.3
12.4
12.5 | An Example of Bearing and Shaft An Example of an Additive Combination General Formulas Setting Realistic Tolerances Relations Other Than Additive-Subtractive Summary | 333
337
339
340
342
342 | | 12.0 | Problems
Reference | 343
346 | | 13 | STUDYING RELATIONSHIPS BETWEEN VARIABLES BY
LINEAR CORRELATION AND REGRESSION | 347 | | 13.1
13.2
13.3
13.4
13.5
13.6 | Two General Problems First ExampleEstimation Second ExampleCorrelation Simplifying the Calculations Interpretations and Precautions Some Applications Problems References | 347
348
355
360
363
365
367
369 | | 14 | A FEW RELIABILITY CONCEPTS | 371 | | 14.1
14.2
14.3
14.4
14.5
14.6
14.7 | Reliability in General Definitions of Reliability Time to First Failure, the Geometric Distribution Lower Confidence Limit on Reliability The Exponential Distribution for Length of Life Reliability of Complex Equipment Summary Problems References | 371
372
373
375
377
380
382
383 | | Append
Answer
Index | ix: Tables of Statistical and Mathematical Functions s to Odd-Numbered Problems | 38.
40.
41 |