Contents

Preface xi

1 Review of Statistical Concepts 1

Probability Theory 1 Mathematical Concepts of
Probability 1 Applied Probability Theory 2

Distribution Theory 3 Joint Distributions 4

Summary Values 4 Covariance and Correlation 6

Sampling 7 Point Estimation 7 Hypothesis
Testing 8 Power 9

Summation 9

Notation 10

2 Important Distributions 12

The Normal Distribution 12
Distributional Notation 13
Chi-Square 14
Noncentral Chi-Square 15
t Distribution 16
F Distribution 17
Noncentral F 17
Tables and Interpolation 18

3 Analysis of Variance: One-way, Fixed Effects 20

Assumptions 20
Analysis: Equal Sample Sizes 22 Mean Square
Within 23 Mean Square Between 24 Mean
Square Total 25 The F Test 26 Expected
Values of Mean Square Within and Between 27
Robustness of F 31 Effects of Nonnormality 31
Unequal Variances 32 Independence of

Observations 35 Independence of

Power of the *F* Test 36 Computational Formulas

Computational Formulas 37

Analysis: Unequal Sample Sizes 39 Computational Formulas 42 Power of F with Unequal Sample

Robustness of F with Unequal Sample

Sizes 42 Sizes 43

Other Possible F Tests 44

Exercises 47

4 Comparing Groups 51

Proportion of Variance Accounted For 51
Graphs and Figures 54

Planned Comparisons 55 General Theory 57
Confidence Intervals for Planned Comparisons 60
Necessary Assumptions and Their Importance 60

Independent Hypotheses 63 Relationship to
Ordinary F 67 Interpreting Multiple Significance

Tests 70 Planned Comparisons and the Grand Mean 71 ω^2 for Planned Comparisons 72

Post Hoc Comparisons 73 Adjusted Significance Levels 73 Fisher's Method 74 The Scheffé

Method 74 Relationships Between S and F 77

The *T* Method of Post Hoc Contrasts 77 Relationship of the *T* Method to an Overall Test of Significance 78

Increasing the Power of Post Hoc Comparisons

Comparison of the *S* and *T* Methods 83 Critique of the *S* and *T* Methods 83 Other Post Hoc Comparison

Methods 84 Confidence Intervals for Individual
Means 84

Exercises 84

5 Two-way Analysis of Variance

88

Main Effects

The A Main Effect The B Main Effect 89 Relationships to Planned Comparisons 92 Interaction 92 The Model Equation 94 Interaction Mean Square 94 Interpreting 97 Interaction Interpreting Main Effects 97 Simple Tests on Means Simple Effects 98 99 **Computational Formulas** 100 Unequal Sample Sizes **Expected Mean Squares** Power of the Tests 104 Robustness of the Tests 104 Transformations on the Data Pooling Sums of Squares One Observation Per Cell 108 Exercises 108

Random Effects 112 6

One-way Model 112 Model Equation and Assumptions 113 Characteristics of Random Mean Squares 115 Comparison Effects 114 with the Fixed-Effects Model 116 The *F* Test 117 119 Hypotheses about Importance of Assumptions the Grand Mean 120 121 The Model and the Two-way Model **Expected Mean Squares and** Assumptions 124 Note on Terminology 133 F Ratios 127 134 Robustness 133 Variance Estimates Power Pooling Sums of Squares Calculations 135 Planned and Post Hoc Comparisons 136 136 Exercises 138

Higher-way Designs 7

147

Kinds of Models

Assumptions 147 Rules for Calculating Sums of Mean Squares 149 Mean Squares Rules for Calculating Degrees 149

of Freedom and Mean Squares 151 **Expected Mean Squares Pooling Sums F** Ratios and Variance Estimates 154 One Observation per Cell 155 of Squares 154 Box's Correction 156 Quasi-F Ratios 155 Standard Method 156 Comparisons 156 **Approximate** Analyzing Planned Comparisons 160 Planned Comparisons 162 Exact Planned Comparisons – Special Cases 163

Exercises 164

8 Nested Designs 166

Two-way Model 168 Sums of Squares and Degrees of Freedom 170 Models 171 Assumptions 173

Higher-way Models 173 The Model Equations
176 Sums of Squares and Degrees of Freedom 178
Expected Mean Squares 180 F Ratios 182
Variance Estimates 182 Assumptions and Box's
Correction 183 Power 185 Comparisons
185 Treating Error as a Random Effect 187
Exercises 189

9 Other Incomplete Designs 196

Two-Factor Designs—Incomplete Blocks 198
Balanced Incomplete Blocks 199
Three-Factor Designs 206 Youden Squares 206
Latin Squares 209 Repeated Balanced Incomplete
Blocks 210
Higher-way Designs 214
Exercises 216

10 One-way Designs with Quantitative Factors 220

Trend Analysis of One-way Fixed Effects 221 The Model Equation 221 Linear Trend 223 Higher-Order Trends 225
One Observation Per Cell 234 Trend Test 235
Estimating Trends 238

Random Effects Model—Correlation 238 Linear Trend 239 Linear Correlation 242 Estimation 243 Other Tests, Power, Confidence Intervals, 245 Exercises 246

11 Trend Analyses in Multifactor Designs 248

Main Effects 248

Two-way Interactions with One Numerical Factor 250
Significance Tests 250 Estimation 252
Higher-way Interactions with One Numerical Factor
255 Significance Tests 259 Estimation 260
General Principles 262

Two Numerical Factors 265 Two-way Interactions 265 Three-way Interactions with Two Numerical Factors 271

More than Two Numerical Factors 276 Three-way Interactions 277 Higher-way Interactions 279 Factors with Unequally Spaced Numerical Values 282 Exercises 283

12 Multifactor Designs with Random Numerical Factors 285

Two-way Designs 285 The Model 286
Estimates of Effects 287 Significance Tests 289
Interpretation of Significance Tests 290
Assumptions 295 Linearity 295 Equal Slopes 295

Alternatives to the Analysis of Covariance 297

Experimental Control of the Covariate 297 Other Kinds of Statistical Control 298

General Analysis of Covariance – Fixed Effects 299
The Model Equation 300 Estimates of Effects 300
Significance Tests 303 Testing for Equal Slopes
304

Random and Mixed Designs 305 Adjusted Grand Mean 307 Multiple Covariates 308 Relaxing the Assumptions 309 Exercises 309

Appendix 313

Table A-1.	Upper-tail significance levels of the
	standard normal distribution.

Table A-2. Values of the standard normal distribution for selected two-tailed significance levels.

Table A-3. Values of the chi-square distribution for selected one-tailed significance levels.

Table A-4. Values of the *t* distribution for selected two-tailed significance levels.

Table A-5. Values of the *F* distribution for selected one-tailed significance levels.

Table A-6. Upper α point of Studentized range, for $\alpha = 0.01$, $\alpha = 0.05$, and $\alpha = 0.10$.

Table A-7. Coefficients of orthogonal polynomials. Arcsin transformation (Z = 2 arcsin R).

Table A-8. Arcsin transformation $(Z = 2 \arcsin R)$. Inverse arcsin transformation (Z to R).

Table A-10. Curves of constant power for selected numerator degrees of freedom, ν .

List of Symbols 330

Bibliography 335

Index 343