CONTENTS

PR	PREFACE			
1	BASIC CONCEPTS			
	1.1 Introduction	1		
	1.2 Basic formulation	3		
	1.3 Scope of this monograph	5		
2	PARAMETRIC APPROACHES - INDEPENDENT RISKS			
	2.1 Introductory	7		
	2.2 The case when all lifetimes and associated causes of failure are known			
	2.3 The case of censored lifetimes	10		
	2.4 The case of lifetimes grouped into intervals	12		
	2.5 The case of possible immunity for some individuals	12		
	2.6 Combination of cases already considered	13		
3	SPECIFIC DISTRIBUTIONS – INDEPENDENT RISKS			
	3.1 Exponential life distributions	15		
	3.1.1 All lifetimes and associated causes of failure known	15		
	3.1.2 Censored observations	18		
	3.1.3 Grouped observations	18		
	3.1.4 Crude, net, and partial crude probabilities	19		
	3.2 Weibull life distributions	19		
	3.2.1 Type I censoring with equal shape constants	20		
	3.2.2 Type II censoring with equal shape constants	23		
	3.2.3 Grouped observations for equal shape constants	25		
	3.2.4 Type I censoring with unequal shape constants	27		
	3.3 Normal life distributions	29		
	3.3.1 Case of unequal means, unequal variances	29		
	3.3.2 Case of unequal means, equal variances	31		
	3.4 Gompertz life distributions	32		
4	PARAMETRIC APPROACHES – DEPENDENT RISKS	34		
	4.1 The general approach	34		
	4.2 Absolutely continuous joint distribution of theoretical lifetimes	35		
	4.3 Questions of identifiability	39		
	4.4 The multivariate exponential distribution and some generalizations	41		
5	LESS DISTRIBUTION-DEPENDENT MODELS	45		
	5.1 Proportional hazard rates	45		
	5.2 Chiang's proportionality assumption	48		
	5.3 Relations between net, crude, and partial crude probabilities	49		

	5.4 5.5	Estimation of crude, net, and partial crude probabilities Kimball's method	50 52
	5.6	Nonparametric estimates	53
6	USE	OF CONCOMITANT INFORMATION	57
	6.1	The setting	57
	6.2	Parametric approach	58
	6.3	Proportional failure rates	59
	6.4	Arbitrary hazard rates (assuming different β_i for each C_i)	62
7	GRA	PHICAL METHODS AND EXAMPLES	63
	7.1	Introductory remarks	63
	7.2	Graphical methods	63
	7.3	Example dealing with treatment for cancer of the breast	67
	7.4	Example dealing with corrective heart surgery	77
8 CONCLUDING REMARKS			84
Pl	ROBL	EMS	86
APPENDIX A		DIX A Historical note on the theory of competing risks	90
APPENDIX B		DIX B Minimization (or maximization) technique based on Marquardt's compromise	92
R	EFER:	ENCES	94
IN	DEX		101