Contents

Preface xv

PART ONE THEORY

1.	Line	ar Algebra I	1.1
	1.1	Systems of Linear Algebraic Equations	1.1
	1.2	Matrices	1.2
	1.3	Determinants and the Inverse Matrix	1.5
	1.4	Direct Methods	1.8
	1.5	Error Analysis	1.13
	1.6	Overdetermined System of Equations	1.20
	1.7	Iterative Methods	1.21
2.	Inte	polation, Approximation, and Numerical Differentiation	2.1
	2.1	Interpolation Techniques	2.1
	2.2	Lagrange Interpolation	2.3
	2.3	Newton Interpolation	2.5
	2.4	Hermite Interpolation	2.8
	2.5	Cubic-Spline Interpolation	2.10
	2.6	Trigonometric Interpolation	2.14
	2.7	Inverse Interpolation	2.15
	2.8	Least-Squares Techniques	2.15
	2.9	Approximation by Chebyshev Polynomials	2.17
	2.10	Approximation by Orthogonal Polynomials with Arbitrarily Distributed Abscissas	2.19
	2.11	Approximation of a Periodic Function	2.21

viii	co	ONTENTS	
	2 12	Economization of a Power Series	2.23
		Approximation by a Rational Function	2.24
		Numerical Differentiation	2.27
		Choosing the Method	2.30
3.	Evalu	uation of Definite Integrals	3.1
	3.1	Methods of Numerical Integration	3.1
	3.2	Integrals with Numerically Defined Integrands	3.4
	3.3	Integrals over Finite Intervals	3.5
	3.4	Integrals over Semi-Infinite Intervals	3.6
	3.5	Integrals over Infinite Intervals	3.7
	3.6	Romberg Integration	3.8
	3.7	Singular Integrals	3.10
4.	Ordi	nary Differential Equations	4.1
	4.1	Definitions and Analytical Methods of Integration	4.1
	4.2	Differential Equations Defining Special Functions	4.12
	4.3	Euler and Taylor-Series Methods	4.16
	4.4	Runge-Kutta Methods	4.20
	4.5	Predictor-Corrector Methods	4.24
	4.6	Stability and Accuracy of Integration Methods	4.31
	4.7	Choosing the Method	4.32
5.	Bou	ndary-Value Problems of Ordinary Differential Equations	5.1
	5.1	Analytical Approach to Boundary-Value Problems	5.1
	5.2	Orthogonal Eigenfunctions Defined as Solutions of a Boundary-Value Problem	5.6
	5.3	Numerical Approach to Boundary-Value Problems	5.11
6.	Non	linear Equations	6.1
	6.1	Direct Methods for Algebraic Equations	6.1
	6.2	Iterative Methods	6.5
	6.3	Real Roots of Algebraic and Transcendental Equations	6.9
	6.4	Complex Roots of Algebraic Equations	6.11
	6.5	Analysis of Errors in Roots of Algebraic Equations	6.12
	6.6	Real Roots of a System of Nonlinear Equations	6.13
7.	Line	ar Algebra II	7.1
	7.1	Algebraic Eigenvalue Problem	7.1
	7.2	Numerical Computation of the Eigenvalues of a Real Matrix	7.3
	7.3	Eigenvectors	7.5
8.	Spec	cial Functions	8.1
	8.1	The Polynomial Function	8.1
	8.2	Orthogonal Polynomials	8.2
	8.3	Hypergeometric Series and Confluent Hypergeometric Functions	8.3

8.4 Incomplete Elliptic Integrals of the First, Second, and Third Kind

8.5

	CONTENTS	s ix
	8.5 The Bessel Function $J_n(x)$ and Modified Bessel Function $I_n(x)$ of	
	Integer Order	8.6
	8.6 The Bessel Function $J_{\nu}(x)$ of Order $\nu > -\frac{1}{2}$	8.6
	8.7 The Bessel Function $Y_{\nu}(x)$ of Order $\nu > -\frac{1}{2}$	8.7
	8.8 The Modified Bessel Function $K_{\nu}(x)$	8.7
	8.9 The Spherical Bessel Functions $j_n(x)$ and $y_n(x)$	8.7
	8.10 The Gamma Function of a Real Argument	8.8
	8.11 The Gamma Function $\Gamma(\frac{1}{2} + n)$ for $n = 0, \pm 1, \pm 2,$	8.9
	8.12 The Incomplete Gamma Function	8.9
	8.13 The Beta Function	8.9
	8.14 The Error Function	8.10
	8.15 The Fresnel Integrals $C(x)$ and $S(x)$	8.11
	8.16 The Sine Integral and Cosine Integral	8.11
	8.17 The Exponential Integral and Logarithmic Integral	8.12
	8.18 The Gudermannian and Its Inverse	8.13
9.	Selected Problems of Mathematical Statistics	9.1
	9.1 Elements of Combinatorial Analysis	9.1
	9.2 Basic Concepts of Mathematical Statistics	9.2
	9.3 Curve Fitting	9.5
	9.4 Binomial and Negative Binomial Distribution	9.9
	9.5 Hypergeometric Distribution	9.10
	9.6 Poisson Distribution	9.11
	9.7 Normal Distribution and Inverse Normal Distribution	9.11
	9.8 Chi-Square Distribution	9.13
	9.9 t Distribution	9.14
	9.10 F Distribution	9.14
	References	R.1
PA	RT TWO PROGRAMS IN BASIC	P.1
T In	ng the Drograms	P.3
	ng the Programs	
1.	Linear Algebra I	P.7
	P101 Condition Indicator for a System of Linear Algebraic Equations	P.7
	P102 Solution of a System of Linear Algebraic Equations by the Doolit-	
	tle Method with Partial Pivoting and/or Computation of the Determinant	P.11
	P103 Solution of a Tridiagonal System of Linear Algebraic Equations	P.17
	P104 Solution of a Pentadiagonal System of Linear Algebraic Equations	P.21
	P105 Reduction of an Overdetermined System of Linear Algebraic Equa-	
	tions to a Determined System of Normal Equations	P.25
	P106 Iterative Methods for a System of Linear Algebraic Equations:	
	Jacobi, Gauss-Seidel, and Successive-Overrelaxation Methods	P.27
2.	Interpolation, Approximation, and Numerical Differentiation	P.31
	P201 Lagrange Interpolation	P.31

CONTENTS

	P202	Lagrange Interpolation with Equally Spaced Abscissas	P.34
		Newton Interpolation for the Function and Its First and Second	
		Derivatives	P.37
		Newton Interpolation with Equally Spaced Abscissas for the Function and Its First and Second Derivatives	P.41
	P205	Hermite Interpolation for the Function and Its First and Second Derivatives	P.44
	P206	Hermite Interpolation with Equally Spaced Abscissas for the Function and Its First and Second Derivatives	P.48
	P207	Hermite Interpolation of a Function Defined at Two Points by the Function and Its First and Second Derivatives for the Function	D 52
		and Its First and Second Derivatives	P.52 P.55
		Cubic Spline for the Function and Its First and Second Derivatives	P.33
	P209	Cubic Spline with Equally Spaced Abscissas for the Function and Its First and Second Derivatives	P.60
	P210	Trigonometric Interpolation	P.65
		Least-Squares Approximation by Chebyshev Polynomials for the Function and Its First and Second Derivatives	P.68
		Least-Squares Approximation by Orthogonal Polynomials with Arbitrarily Spaced Abscissas and a Given Weight Function for the Function and Its First and Second Derivatives	P.73
	P213	Least-Squares Approximation by Orthogonal Polynomials with Arbitrarily Spaced Abscissas and a Weight Function Equal to 1 for the Function and Its First and Second Derivatives	P.79
	P214	Least-Squares Approximation by Orthogonal Polynomials with Equally Spaced Abscissas and a Given Weight Function for the Function and Its First and Second Derivatives	P.84
	P215	Least-Squares Approximation by Orthogonal Polynomials with Equally Spaced Abscissas and a Weight Function Equal to 1 for the Function and Its First and Second Derivatives	P.90
	P216	Least-Squares Approximation of a Periodic Function (Fourier Series) for the Function and Its First and Second Derivatives	P.95
	P217	Least-Squares Approximation of an Even Periodic Function (Fourier Series) for the Function and Its First and Second Derivatives	P.100
	P218	Least-Squares Approximation of an Odd Periodic Function (Fourier Series) for the Function and Its First and Second Derivatives	P.104
	P219	Economization of a Power Series	P.108
	P220	Padé Approximation of a Truncated Series with 8 Terms for the Function and Its First and Second Derivatives	P.111
		Modified Padé Approximation of a Truncated Series with 13 Terms for the Function and Its First and Second Derivatives	P.114
		Least-Squares Approximation by a Rational Function with Chebyshev Polynomials for the Function and Its First and Second Derivatives	P.118
	P223	Numerical Differentiation: First and Second Derivatives of a Function Defined by 3, 5, or 7 Points with Equally Spaced Abscissas	P.124
3.	Evalu	nation of Definite Integrals	P.128
		Integration of a Numerically Defined Integrand by Composite Simpson's Rule	P.128

	P302	Integration of a Numerically Defined Integrand by Modified Composite Simpson's Rule	P.130
	P303	Integration of a Numerically Defined Integrand with Equally Spaced Abscissas by Composite Corrected Trapezoidal Rule	P.132
	P304	Integration of a Numerically Defined Integrand with Arbitrarily	
	Dags	Spaced Abscissas by Composite Corrected Trapezoidal Rule	P.134
	P305	Composite Gaussian Integration of an Integral over a Finite Interval	P.136
	P306	Laguerre Integration of an Integral over a Semi-Infinite Interval	P.138
		Composite Gauss-Laguerre Integration of an Integral over a Semi-Infinite Interval	P.140
	P308	Hermite Integration of an Integral over an Infinite Interval	P.143
	P309	Composite Gauss-Laguerre Integration of an Integral over an Infinite Interval	P.144
	P310	Romberg Integration	P.147
	P311	Chebyshev-Gauss Integration of a Singular Integral	P.149
	P312	Integration of an Integral with Logarithmic Singularity	P.150
4.	Ordin	nary Differential Equations	P.151
	P401	Fourth-Order Taylor-Series Method for a Set of Differential Equations of First Order	P.151
		Fourth-Order Taylor-Series Method for a Set of Differential Equations of Second Order	P.156
		Fourth-Order Standard Runge-Kutta Method for a Set of Differential Equations of First Order	P.160
		Gill's Version of Fourth-Order Runge-Kutta Method for a Set of Differential Equations of First Order	P.164
		Third-Order Predictor-Corrector Method for a Set of Differential Equations of First Order	P.168
		Fourth-Order Predictor-Corrector Method for a Set of Differential Equations of First Order	P.173
	P407	Fourth-Order Predictor-Corrector Method for a Set of Differential Equations of Second Order	P.178
5.	Bound	lary-Value Problems of Ordinary Differential Equations	P.183
	P501	Lagrange Interpolation for Boundary-Value Problems of One Ordinary Differential Equation of Second Order	P.183
6.	Nonli	near Equations	P.186
	P601	Roots of a Quadratic Equation	P.186
		Roots of a Cubic Equation	P.188
		Roots of a Biquadratic Equation	P.190
		Preliminary Location of Real Roots of a Nonlinear Equation	P.193
		Real Roots of a Nonlinear Equation (with Deflation Subroutine for an Algebraic Equation)	P.196
	P606	Real and Complex Roots of an Algebraic Equation (with Deflation Subroutine)	P.201

xii CONTENTS

	P607	Real Roots of Two Nonlinear Equations by Fixed-Point Iteration Real Roots of Two Nonlinear Equations by the Newton or Modi-	P.209
	F 000	fied Newton Method	P.211
7.	Lines	r Algebra II	P.213
٠.		Preliminary Location of Eigenvalues by the Gershgorin Method	P.213
	P702	Coefficients of a Secular Equation by the Krylov Method	P.216
	P703	Real and Complex Eigenvalues of a Real Matrix from a Secular Equation	P.221
	P704	Orthonormal Eigenvectors of a Real Matrix with Simple Real Eigenvalues	P.229
8.	Speci	al Functions	P.235
-	-	The Polynomial Function and Its First and Second Derivatives	P.235
		Orthogonal Polynomials of Legendre, Laguerre, Hermite, and Chebyshev of the First and Second Kind, Their First and Second Derivatives, and Zeros of Chebyshev Polynomials of the First Kind	P.238
		The Hypergeometric Series, Confluent Hypergeometric Function, Their First and Second Derivatives, the Exponential Integral and Logarithmic Integral	P.242
	P804	Incomplete Elliptic Integrals of the First, Second, and Third Kind, Bessel Functions $J_n(x)$ and Modified Bessel Functions $I_n(x)$ of Integer Order, the Incomplete Gamma Function, the Error Function, Fresnel Integrals $C(x)$, $S(x)$, and Sine and Cosine Integrals in Single Precision	P.246
	P805	Incomplete Elliptic Integrals of the First, Second, and Third Kind, Bessel Functions $I_n(x)$ and Modified Bessel Functions $I_n(x)$ of Integer Order, the Incomplete Gamma Function, the Error Function, Fresnel Integrals $C(x)$, $S(x)$, and Sine and Cosine Integrals in Double Precision	P.250
	P806	Bessel Functions $J_{\nu}(x)$, $Y_{\nu}(x)$, $K_{\nu}(x)$ (ν Is Any Real Number $> -\frac{1}{2}$), and Spherical Bessel Functions $j_n(x)$, $y_n(x)$ (n Is Zero or Any Positive Integer) in Single Precision	P.256
	P807	Bessel Functions $J_{\nu}(x)$, $Y_{\nu}(x)$, $K_{\nu}(x)$ (v Is Any Real Number $> -\frac{1}{2}$), and Spherical Bessel Functions $j_{n}(x)$, $y_{n}(x)$ (n Is Zero or Any Positive Integer) in Double Precision	P.260
	P808	S Spherical Bessel Functions $j_n(x)$, $y_n(x)$ of Order $n = 0,, 9$	P.267
		Gamma Function of a Real Argument	P.270
		Gamma Function of Argument $n + \frac{1}{2}$, n an Arbitrary Integer	P.272
	P81	Beta Function	P.273
	P812	2 Gudermannian, Its Inverse, and Hyperbolic Functions in Single Precision	P.275
9.	Sele	cted Problems of Mathematical Statistics	P.277
	P90	Permutations, Variations, and Combinations	P.277
	P90	2 Arithmetic, Geometric, and Harmonic Mean Values, Variances S^2 , s^2 , Standard Deviations S , s , Standard Errors E , e for a Sample of n	P.280
	pon	Data 3 Arithmetic Mean Value, Variances S^2 , s^2 , Standard Deviations S, s,	1.200
	1 90	Standard Errors E, e for a Sample of Grouped Data	P.282

CONT	ENTS	xiii
P904 Linear, Power, Exponential, and Logarithmic Curve Fit		P.284
P905 Binomial-Power Curve Fit		P.287
P906 Parabolic Curve Fit		P.289
P907 Binomial and Cumulative Binomial Distribution		P.291
P908 Negative Binomial and Cumulative Negative Binomial Distribution		P.293
P909 Hypergeometric and Cumulative Hypergeometric Distribution		P.295
P910 Poisson and Cumulative Poisson Distribution		P.297
P911 Normal Distribution, Chi-Square Distribution, t Distribution Distribution		P.298
P912 Inverse Normal Distribution		P.303
Appendix		P.304
PA1 Derived Elementary Functions in Single Precision		P.304
PA2 Elementary Functions in Double Precision		P.306
PA3 Subroutines for Programming in Double Precision		P.311
Index follows Appendix		I.1