CONTENTS

Preface		vii
CHAPTER 1	MATHEMATICS AND COMPUTER SCIENCE BACKGROUND**]
	 1.1 Calculus 1.2 Vectors, Matrices, and Linear Equations 1.3 Differential Equations 1.4 Programming 	1 9 10
CHAPTER 2	NUMERICAL SOFTWARE	15
	 2.1 The Library Concept 2.2 Using a Library 2.3 Standard Numerical Software* A. Individual programs B. Software libraries C. Software packages D. Software systems 2.4 The IMSL Library The PROTRAN System A. Simple statements B. Declarations, scalars, vectors, and matrices C. Problem-solving statements 	15 16 19 19 19 21 23 26 27 28 28 30
CHAPTER 3	ERRORS, ROUND-OFF, AND STABILITY	33
	3.1 Sources of Uncertainty* A. Real problems and mathematical models B. Constructing and implementing methods Numerical Approximations A. Truncation error	33 33 34 35 35
	B. Order of convergence 3.3 Round-Off Errors A. Floating point arithmetic B. Propagation of round-off errors C. Stability and condition of problems*	37 41 41 43
	3.4 Case Study: Calculation of π^{**}	46 52
	3.5 How to Estimate Errors and Uncertainty	56

^{**}Advanced or peripheral material

^{*} Other material skipped in one-semester course

CHAPTER 4	MODELS AND FORMULAS FOR NUMERICAL COMPUTATIONS	59
	4.1 Polynomials	59
	4.2 Piecewise Polynomials	61
	4.3 Splines 4.4 Other Piecewise Polynomials and Splines with Multiple Knots**	64 69
	4.5 General Methods for Deriving Formulas	72
	A. Models for analytic substitution	72
	B. The method of undetermined coefficients	73 75
	C. Taylor's series method** D. Superaccurate formulas**	76
CHAPTER 5	INTERPOLATION	79
	5.1 General Interpolation Using Linear Equation Solvers	79
	5.2 Interpolation Methods for Polynomials	82
	A. LaGrange polynomial interpolation	82 83
	 B. Newton interpolation and divided differences C. Osculatory interpolation and B-splines with multiple knots** 	88
	5.3 Interpolation Methods for Piecewise Polynomials	92
	A. Hermite cubic interpolation	92
	B. Cubic spline interpolation**	93 95
	5.4 Software for Interpolation A. Software for polynomial interpolation	96
	B. Software for Hermite cubic interpolation	99
	C. Software for cubic spline interpolation	102 106
	5.5 Choice of Interpolation Forms and Points*	100
	 A. Assessment of polynomial representations B. Assessment of piecewise polynomial representations 	108
	C. Selection of interpolation points**	108
	D. Selection of break points and knots**	112 114
	5.6 Error Analysis for Interpolation	114
	A. Norms and linear operators B. Divided differences and derivatives	116
	C. Error analysis for polynomial interpolation	117
	D. Error analysis for piecewise polynomial and spline interpolation**	120
CHAPTER 6	MATRICES AND LINEAR EQUATIONS	125
	6.1 Types and Sources of Matrix Computation Problems**	125
	A. Linear systems of equations, $Ax = b$	125
	B. Types of matrices	127 130
	C. Matrix computation problems 6.2 Gauss Elimination, LU-Factorization, and Pivoting	132
	A. Pivoting in Gauss elimination	134
	B. Scaling and testing for floating point zero	136
	C. Algorithm variations	137 139
	D. Operations count for Gauss elimination 6.3 Iteration Methods for Linear Systems*	142
	A. Jacobi, Gauss-Seidel, and SOR iteration	142
	B. When iteration methods should be considered	145
	6.4 Software for Linear Equations	146 146
	A. The ACM Algorithms B. Three software packages	147
	C. The IMSL library software	149
	6.5 Case Study: Design of the Interface for a Linear Equations Solver	156
	A. Design of a Fortran interface	156 158
	B. Storage allocation and variable dimensionsC. The PROTRAN interface of Ax = b	159
	6.6 Analysis of the Linear Equations Problem	161
	A. Matrix factorization	161
	B. Three condition numbers*	164 160
	C. Sensitivity analysis	167
	D. Iterative improvement**E. The composite error estimate**	168
	F. Comparison of error estimators**	169
	6.7 Eigensystem Problems and Software	17:
	A. Eigensystem problems	17: 17:
	B. ACM Algorithms and EISPACK C. IMSL software	17
	C. HVIDL SULLWAID	-

CHAPTER 7	DIFFERENTIATION AND INTEGRATION	181
	7.1 Methods for Estimating Derivatives	181
	A. Finite differences	182
	B. Other models for discrete data 7.2 Software for Differentiation	182
	7.3 Error Analysis for Differentiation	183 185
	7.4 The Estimation of Integrals	186
	A. Basic rules	187
	B. Composite rules	187
	C. Piecewise polynomial methods	189
	 D. Integration rules with weight functions** E. Gauss rules for superaccuracy** 	190
	7.5 Adaptive Quadrature**	190 193
	7.6 Software for Integration	199
	A. ACM Algorithms and IMSL software	199
	B. Performance evaluation of four integration methods	200
	C. Selection of methods for numerical integrationD. Reverse communication	205
	7.7 Error Analysis for Integration	207 211
CHAPTER 8	NONLINEAR EQUATIONS	217
		217
	8.1 Formulating Problems as f(x) = 0*	217
	8.2 Methods for One Nonlinear Equation A. Seven basic iteration methods	220
	B. Convergence tests	220 226
	C. Initial guesses for iteration methods*	229
	8.3 Special Situations and Polyalgorithms**	232
	A. Multiple roots	232
	B. Deflation C. Polyalgorithms for nonlinear equations	234
	8.4 Polynomial Equations	235 236
	A. Application of general methods	236
	B. Special methods for polynomials	237
	C. Deflation and purification*	238
	8.5 Systems of Nonlinear Equations 8.6 Software for Nonlinear Equations	239
	8.7 Analysis of Methods for Nonlinear Equations	241
	A. Bisection, Regula Falsi	251 251
	B. Fixed-point iteration and Δ^2 — acceleration	251
	C. Analysis of methods with a linear model	254
	D. Analysis of methods with a quadratic model**	257
	E. Remarks on methods not analyzed** 8.8 Selection of Methods for Nonlinear Equations**	259
	A. Order and efficiency of methods	260
	B. Selection of methods	260 263
CHAPTER 9	ORDINARY DIFFERENTIAL EQUATIONS	265
	9.1 Introduction	203
	A. Differential and difference equations	265
	B. Stability of differential and difference equations	265 268
	9.2 Basic Methods for Initial Value Problems	208 270
	A. One step: Euler's method	271
	B. One step: Taylor's series method	272
	C. One step: Runge-Kutta methods D. Multistep methods	273
	E. Predictor-Corrector methods	277
	9.3 Polyalgorithms for Differential Equations**	279 282
	A. Initialization	282
	B. Step size control	283
	C. Order of method control	285
	D. Output control E. Global error control	286
	F. Checking	287
	9.4 Systems of Differential Equations	288
	9.5 Software for Differential Equations	289 291
	A. The ACM Algorithms and other programs	291
	B. IMSL software for initial value problems	292

CHAPTER 14	THE VALIDATION OF NUMERICAL COMPUTATIONS**	451
	14.1 Validation of Models in Numerical Computation	452
	14.2 Sensitivity Analysis and Error Estimation	452
	14.3 Software Errors	455
		432
CHAPTER 15	PROTRAN**	459
	15.1 How PROTRAN Works	459
	15.2 PROTRAN Variables: Scalars, Vectors, and Matrices	461
	A. PROTRAN declarations	462
	B. Range variables for vectors and matrices	463
	C. Special matrix storage formats	465
	15.3 Debugging PROTRAN Programs	467
	15.4 PROTRAN Statements	468
	A. General purpose statementsB. Simple statements	468
	C. Problem-solving statements	470 471
		.,.
CHAPTER 16	REFERENCE MATERIAL* *	475
	16.1 INTRO: Introduction to the IMSL Library	477
	16.2 CONTENTS: Description of IMSL Library Subroutines	490
	16.3 KWIC: IMSL Library KWIC Index	556
	16.4 A: Analysis of Variance	580
	16.5 B: Basic Statistics	582
	16.6 C: Categorized Data Analysis	586
	16.7 D: Differential Equations; Quadrature; Differentiation 16.8 E: Eigensystem Analysis	587
	16.9 F: Forecasting; Econometrics; Time Series; Transforms	589
	16.10 G: Generation and Testing of Random Numbers	591
	16.11 I: Interpolation; Approximation; Smoothing	596
	16.12 L: Linear Algebraic Equations	600
	16.13 M: Mathematical and Statistical Special Functions	604 609
	16.14 N: Nonparametric Statistics	614
	16.15 O: Observation Structure: Multivariate Statistics	617
	16.16 R: Regression Analysis	621
	16.17 S; Sampling	626
	16.18 U: Utility Functions	627
	16.19 V: Vector-Matrix Arithmetic	629
	16.20 Z: Zeros and Extrema; Linear Programming	632
	16.21 ACM: Index by Subject to Algorithms, 1960-1980	635
INDEX		653
		033