CONTENTS

	PREFACE		ix
	NOTE TO THE STUDENT		xiii
1	SQUARES, SQUARE ROOTS, AND THE QUADRATIC	FORMULA	1
	Introduction	1	
	The Definition	2	
	Example: √67.89	2	
	The Algorithm	1 2 2 5 6	
	Example: √100	6	
	Exercises	6	
	Problems	10	
2	MORE FUNCTIONS AND GRAPHS		14
	Introduction	14	
	Definition: Limits of Sequences	15	
	Example: $x^3 - 3x - 1 = 0$	15	
	Finding z ₃ with another Algorithm	17	
	Finding 23 with Synthetic Division	19	
	Example: $4x^3 + 3x^2 - 2x - 1 = 0$	20	
	Exercises	21	
	Problems	24	
3	LIMITS AND CONTINUITY		27
	Introduction	27	
	Example: $f(x) = 3x + 4$	28	
	Examples: Theorems for Sums and Products	31	

	Examples: Limits of Quotients	32	
	Exercises	33	
	Problems	34	
4	DIFFERENTIATION, DERIVATIVES, AND DIFFERENTIALS		
	Introduction	37	
	Example: $f(x) = x^2$	38	
	Example: $f(x) = 1/x$	39	
	Rules for Differentiation	40	
	Derivatives for Polynomials	41	
	Example: The Derivative of \sqrt{x}	41	
	Differentials	41	
	Example: $\sqrt{103}$, Example: $\sqrt{142.3}$	43	
	Example: Painting a Cube	43	
	Composites and Inverses	44	
	Exercises	46	
	Problems	49	
5	MAXIMA, MINIMA, AND THE MEAN VALUE THEORI	ЕМ	55
	Introduction	55	
	Example: A Minimal Fence	56	
	The Mean Value Theorem	58	
	Example: Car Speed	58	
	Example: Painting a Cube	59	
	Exercises	59	
	Problems	62	
6	TRIGONOMETRIC FUNCTIONS		64
	Introduction	64	
	Angles	65	
	Trig Functions	66	
	Triangles	67	
	Example: The Derivative for $\sin x$	68	
	Derivatives for Trig Functions	69	
	Example: $f(x) = x \sin x - 1$	70	
	Inverse Trig Functions	71	
	Example: $f(x) = 2 \arcsin x-3$	72	
	Exercises	73	
	Problems	77	
7	DEFINITE INTEGRALS		81
	Tukus kushi sa	81	
	Introduction	81 82	
	Example: π and the Area of a Disc	82 85	
	Riemann Sums and the Integral	85 88	
	Example: The Area under $f(x) = x \sin x$		
	Average Values	89 80	
	Fundamental Theorems	89	
	Trapezoidal Sums	90	
	Example: The Sine Integral	92	

	Exercises Problems	93 96	
8	LOGARITHMS AND EXPONENTIALS		100
	Introduction	100	
	The Definition of Logarithm	101	
	Example: 1n 2	103	
	The Graph of $\ln x$	103	
	Exponentials	103	
	Example: A Calculation of e	105	
	Example: Compound Interest and Growth	106 107	
	Example: Carbon Dating and Decay	107	
	Exercises Problems	113	
9	VOLUMES		117
3	7-52-7-52	.15	
	Introduction	117	
	Example: The Slab Method for a Cone	119 121	
	Example: The Slab Method for a Ball	121	
	Example: The Shell Method for a Cone	123	
	Exercises Problems	127	
			130
10	CURVES AND POLAR COORDINATES		130
	Introduction	130	
	Example: $f(x) = 2\sqrt{x}$	131	
	Example: $g(x) = x^2/4$	133	
	Example: Parametric Equations and the		
	Exponential Spiral	134	
	Polar Coordinates	137 138	
	Example: The Spiral of Archimedes	141	
	Exercises Problems	143	
			149
11	SEQUENCES AND SERIES		14.
	Introduction	145	
	The Definitions	146	
	Example: The Harmonic Series	146	
	Example: p-Series	147	
	Geometric Series	148	
	Example: An Alternating Series	149	
	Example: Estimation of Remainders by	150	
	Integrals Example: Estimation of Remainders for	200	
	Alternating Series	153	
	Example: Remainders Compared to Geometric		
	Series	155	
	Round-off	156	
	Exercises	157	
	Problems	160	

12	POWER SERIES		168
1/2	TOREK OBATEO		
	Introduction	168	
	The Theorems	169	
	Example: e^x	170 171	
	Taylor Polynomials	171	
	The Remainder Function	174	
	Example: The Calculation of e^x Example: Alternative Methods for e^x	174	
	Example: Alternative Methods for 8	175	
	Exercises Problems	178	
	Problems		
13	TAYLOR SERIES		184
	Introduction	184	
	Taylor's Theorem	185	
	Example: $\ln x$	187	
	Newton's Method	188	
	Example: $2x + 1 = e^x$	189	
	Example: $f(x) = (x-1)/x^2$	191	
	Example: Integrating the Sine Integral	192	
	with Series	192	
	Example: The Fresnel Integral	193	
	The Error in Series Integration	194	
	Example: $1/(1-x^2)$	196	
	Exercises Problems	199	
	Problems		
14	DIFFERENTIAL EQUATIONS		202
	Introduction	202	
	Example: $y' = ky$ and Exponential Growth	203	
	Some Definitions	204	
	Separable Variables	205	
	Frample: The Rumor DE	206	
	Example: Series Solution by Computed	222	
	Coefficients for $y' = 2xy$	208	
	Example: Series Solution by Undetermined	21.0	
	Coefficients for $y' = x - y$	210	
	Example: A Stepwise Process	212 213	
	Exercises	216	
	Problems	210	
	APPENDIX: SOME CALCULATION TECHNIQUES AND TRICKS	MACHINE	<u>∠</u> 20
		220	
	Introduction	220	
	Invisible Registers	222	
	Program Records	223	
	Rewriting Formulas	224	
	Constant Arithmetic	225	
	Factoring Integers Integer Parts and Conversion of Decimals	225	
	integer Parts and Conversion of Beetmars		

Polynomial Evaluation and Synthetic		
Division	226	
Taylor Series Evaluation	227	
Artificial Scientific Notation	228	
Round-off, Overflow, and Underflow	229	
Handling Large Exponents	230	
Machine Damage and Error	231	
REFERENCE DATA AND FORMULAS		233
Greek Alphabet	233	
Mathematical Constants	233	
Conversion of Units	233	
Algebra	234	
Geometry	235	
Ellipse; Center at Origin	235	
Hyperbola; Center at Origin	236	
Parabola, Vertex at Origin, Opening in		
Direction of Positive y	236	
Trigonometric Functions	237	
Exponential and Logarithmic Functions	239	
Differentiation	239	
Integration Formulas	240	
Indefinite Integrals	241	
BIBLIOGRAPHY	245	
INDEX	251	