CONTENTS

Preface		v
Translator's	s Preface	vi
PART ONE	. PRELIMINARY INFORMATION	
Chapter 1.	Bernoulli Numbers and Bernoulli Polynomials	3
1.1.	Bernoulli numbers	3
1.2.	Bernoulli polynomials	6
1.3.	Periodic functions related to Bernoulli polynomials	13
1.4.	Expansion of an arbitrary function in Bernoulli polynomials	15
Chapter 2.	Orthogonal Polynomials	
2.1.	General theorems about orthogonal polynomials	18
2.2.	Jacobi and Legendre polynomials	23
2.3.	Chebyshev polynomials	26
2.4.	Chebyshev-Hermite polynomials	33
2.5.	Chebyshev-Laguerre polynomials	34
Chapter 3.	Interpolation of Functions	37
3.1.	Finite differences and divided differences	37
3.2.	The interpolating polynomial and its remainder	42
3.3.	Interpolation with multiple nodes	45
Chapter 4.	Linear Normed Spaces. Linear Operators	50
4.1.	Linear normed spaces	50
4.2.	Linear operators	54
4.3.	Convergence of a sequence of linear operators	59

viii Contents

PART TWO.	APPROXIMATE CALCULATION OF DEFINIT	E
	INTEGRALS	

Chapter 5.	Quadrature Sums and Problems Related to Them. The Remainder in Approximate Quadrature	65
5.1.	Quadrature sums	65
5.2.	Remarks on the approximate integration of periodic functions	73
5.3.	The remainder in approximate quadrature and its representation	74
Chapter 6.	Interpolatory Quadratures	79
6.1.	Interpolatory quadrature formulas and their remainder	
	terms	79
6.2.	Newton-Cotes formulas	82
6.3.	Certain of the simplest Newton-Cotes formulas	92
Chapter 7.	Quadratures of the Highest Algebraic Degree of	
	Precision	100
7.1.	General theorems	100
7.2.	Constant weight function	107
7.3.	Integrals of the form $\int_a^b (b-x)^a (x-a)^{\beta} f(x) dx$ and	
	their application to the calculation of multiple integrals	111
7.4.	The integral $\int_{-\infty}^{\infty} e^{-x^2} f(x) dx$	129
7.5.	Integrals of the form $\int_0^\infty x^{\alpha} e^{-x} f(x) dx$	130
Chapter 8.	Quadrature Formulas with Least Estimate of the	
0.1	Remainder	133
8.1.	Minimization of the remainder of quadrature formulas	133
8.2.	Minimization of the remainder in the class $L_q^{(r)}$	134
8.3.	Minimization of the remainder in the class C_r	149
8.4.	The problem of minimizing the estimate of the remainder for quadrature with fixed nodes	153
Chapter 9.	Quadrature Formulas Containing Preassigned Nodes	160
9.1.	General theorems	160
9.2.	Formulas of special form	166
9.3.	Remarks on integrals with weight functions that change sign	174

Contents	ix

Chapter 10.	Quadrature Formulas with Equal Coefficients	179
10.1.	Determining the nodes	179
10.2.	Uniqueness of the quadrature formulas of the highest	
	algebraic degree of precision with equal coefficients	183
10.3.	Integrals with a constant weight function	187
Chapter 11.	Increasing the Precision of Quadrature Formulas	200
11.1.	Two approaches to the problem	200
11.2.	Weakening the singularity of the integrand	202
11.3.	Euler's method for expanding the remainder	206
11.4.	Increasing the precision when the integral representa-	
	tion of the remainder contains a short principle sub- interval	229
Chapter 12.	Convergence of the Quadrature Process	242
12.1.	Introduction	242
12.2.	Convergence of interpolatory quadrature formulas for analytic functions	243
12.3.	Convergence of the general quadrature process	264
PART THR	EE. APPROXIMATE CALCULATION OF INDEFINITE INTEGRALS	
Chapter 13.	Introduction	277
13.1.	Preliminary remarks	277
13.2.	The error of the computation	281
13.3.	Convergence and stability of the computational	
	process	288
Chapter 14.	Integration of Functions Given in Tabular Form	298
14.1.	One method for solving the problem	298
14.2.	The remainder	302
Chapter 15.	Calculation of Indefinite Integrals Using a Small	303
	Number of Values of the Integrand	303 303
	General aspects of the problem	
15.2.	Formulas of special form	309
Chapter 16.	Methods Which Use Several Previous Values of the	
	Integral	320
	Introduction	320
16.2.	Conditions under which the highest degree of precision is achieved	323

x

16.3. The number of interpolating polynomials of the highest	
degree of precision	326
16.4. The remainder of the interpolation and minimization of	
its estimate	327
16.5. Conditions for which the coefficients a_j are positive	329
16.6. Connection with the existence of a polynomial solution	
to a certain differential equation	331
16.7. Some particular formulas	333
Appendix A. Gaussian Quadrature Formulas for Constant Weight	
Function	337
Appendix B. Gaussian-Hermite Quadrature Formulas	343
Appendix C. Gaussian-Laguerre Quadrature Formulas	347
Index.	353