Contents

	Preface	. vii
1	Introduction	1
1.1	Rounding errors and instability	2
2	Linear algebraic equations	8
2.1	Gauss elimination	9
2.2	Matrix decomposition methods	16
2.3	Iterative methods	27
3	Non-linear algebraic equations	43
3.1	Bracketing methods	43
3.2	Fixed point iteration	50
3.3	Newton's method	57
3.4	Systems of non-linear equations	64
4	Eigenvalues and eigenvectors	71
4.1	The power method	72
4.2	Deflation	80
4.3	Jacobi's method	88
4.4	Sturm sequence iteration	97
4.5	Givens' and Householder's methods	102
4.6	The LR and QR methods	110
4.7	Hessenberg form	118
5	Methods of approximation theory	129
5.1	Polynomial interpolation: Lagrange form	130
5.2	Polynomial interpolation: divided difference form	138
5.3	Polynomial interpolation: finite difference form	145
5.4	Hermite interpolation	152
5.5	Cubic spline interpolation	159
5.6	Least squares approximation to discrete data	172
5.7	Least squares approximation to continuous functions	180
6	Numerical differentiation and integration	190
6.1	Numerical differentiation	191
6.2	Numerical integration: Newton-Cotes formulas	199

vi	Contents	
6.3	Quadrature rules in composite form	209
6.4	Romberg's method	215
6.5	Simpson's adaptive quadrature	221
6.6	Gaussian quadrature	227
7	Ordinary differential equations: initial value problems	233
7.1	Derivation of linear multistep methods	233
7.2	Analysis of linear multistep methods	244
7.3	Runge-Kutta methods	254
7.4	Systems and higher order equations	258
8	Ordinary differential equations: boundary value problems	265
8.1	The finite difference method	266
8.2	The shooting method	271
Appendix		277 279
References		
Solutions to exercises		281

323

Index