Contents

Pref	ace	•	-		•	V							
1	Some Interrelationships Between Recurrence Relations and Ordinary												
1.1	Introduction					1							
1.2	Some results from the theory of linear recu	rrenc	e rela	tions .		2							
1.3	Some stability aspects of linear multistep methods												
2	An Investigation of Algorithms Recurrence Relations	for	the	Soli	ution	of							
2.1	Second order linear recurrence relations					14							
2.2	An extension to the vector case					19							
2.3	Iterative algorithms for the solution of linear recurrence relations												
2.4	_												
2.5	Higher order recurrence relations .					40							
2.6	A quadratic factor approach					49							
2.7	Another class of iteration schemes .					58							
3	Iterative Algorithms for the So	lutio	n of	Dif	[:] ferer	ntial							
3.1	Non-stiff systems of equations					65							
3.2	Adams-type methods					72							
3.3	Some other classes of integration formulae					84							
3.4	Stability aspects of iterative integration pro	cedu	res			89							
3.5	Stiff systems of equations	•				97							
3.6	A high order one-step integration formula					97							
3.7	Extension to the multistep case					101							
3.8	Computational aspects of iterative formula	e				106							
3.9	Another class of iterative schemes .					110							
3 10	Cyclic iterative integration procedures					122							

xii Contents

3 1 2	Miscellar Second of Applicat	order	eau	atior	ıs									126 130 152
4	Some their C	lter Conr	ativ	e Al	gori [.] with	thms Sin	: Wit	thou	t Tr	unca	ition	Err	ora	and for
4.1	Iterative	solu	ition	of li	near	secor	id or	der O	D.E	is.			-	166
4.2	Extension	on of	Olv	er's a	appro	ach t	o the	solu	tion	of O.	D.E.s			172
4.3	Comput	tatio	nal a	spec	ts.									178
4.4	A specia	al cla	ss o	f seco	ond c	order	O.D.	E.s						179
4.5	A partic													182
4.6	Ordina	v di	ffere	ntial	egua	tions	of ord	ler gr	eater	than	2.			186
4.7	Linear	first	orde	r svs	tems	of or	dinar	y diff	erent	ial ec	juatio	ns		192
4.8	Extensi	on to	the	non	-linea	ar cas	e							202
4.9	Connec	tions	wit	h exi	sting	algor	ithms	s .						205
4.10	Linear	seco	nd o	rder	O.D.	E.s re	-cons	idere	d.		•	٠		211
D C														217
Kei	erences	•	•	•	•	•	•	•	•	·				220
ind	ex .	_						•	•	•	•			