Contents

1.	THEORETICAL BACKGROUND	Page
	Introduction	1
	Definitions	2
	Eigenvalues and eigenvectors of the transposed matrix	3
	Distinct eigenvalues	4
	Similarity transformations	6
	Multiple eigenvalues and canonical forms for general matrices	7
	Defective system of eigenvectors	9
	The Jordan (classical) canonical form	10
	The elementary divisors	12
	Companion matrix of the characteristic polynomial of A	12
	Non-derogatory matrices	13
	The Frobenius (rational) canonical form	15
	Relationship between the Jordan and Frobenius canonical forms	16
	Equivalence transformations	17
	Lambda matrices	18
	Elementary operations	19
	Smith's canonical form	19
	The highest common factor of k-rowed minors of a λ -matrix	22
	Invariant factors of $(A - \lambda I)$	22
	The triangular canonical form	24
	Hermitian and symmetric matrices	24
	Elementary properties of Hermitian matrices	25
	Complex symmetric matrices	26
	Reduction to triangular form by unitary transformations	27
	Quadratic forms	27
	Necessary and sufficient conditions for positive definiteness	28
	Differential equations with constant coefficients	30
	Solutions corresponding to non-linear elementary divisors	31
	Differential equations of higher order	32
	Second-order equations of special form	34
	Explicit solution of $B\ddot{y} = -Ay$	35
	Equations of the form $(AB - \lambda I)x = 0$	35
	The minimum polynomial of a vector	36
	The minimum polynomial of a matrix	37
	Cayley-Hamilton theorem	38
	Relation between minimum polynomial and canonical forms	39
	Principal vectors	42
	Elementary similarity transformations	43
	Properties of elementary matrices	45
	Reduction to triangular canonical form by elementary similarit	y
	transformations	46
	Elementary unitary transformations	47
	Elementary unitary Hermitian matrices	48
	Reduction to triangular form by elementary unitary transformations	50
	Normal matrices	51
	Commuting matrices	52

2.

Eigenvalues of AB	54
Vector and matrix norms	55
Subordinate matrix norms	56
The Euclidean and spectral norms	57
Norms and limits	58
Avoiding use of infinite matrix series	60
	00
PERTURBATION THEORY	
Introduction	62
Ostrowski's theorem on continuity of the eigenvalues	63
Algebraic functions	64
Numerical examples	65
Perturbation theory for simple eigenvalues	66
Perturbation of corresponding eigenvectors	67
Matrix with linear elementary divisors	68
First-order perturbations of eigenvalues	68
First-order perturbations of eigenvectors	69
Higher-order perturbations	70
Multiple eigenvalues	70
Gerschgorin's theorems	71
Perturbation theory based on Gerschgorin's theorems	72
Case 1. Perturbation of a simple eigenvalue λ_1 of a matrix having linear	
elementary divisors.	72
Case 2. Perturbation of a multiple eigenvalue λ_1 of a matrix having linear elementary divisors.	75
Case 3. Perturbation of a simple eigenvalue of a matrix having one or	
more non-linear elementary divisors.	77
Case 4. Perturbations of the eigenvalues corresponding to a non-linear	
elementary divisor of a non-derogatory matrix.	79
Case 5. Perturbations of eigenvalues λ_i when there is more than one	
divisor involving $(\lambda_i - \lambda)$ and at least one of them is non-linear.	80
Perturbations corresponding to the general distribution of non-linear	
divisors	81
Perturbation theory for the eigenvectors from Jordan canonical form	81
Perturbations of eigenvectors corresponding to a multiple eigenvalue	
(linear elementary divisors)	83
Limitations of perturbation theory	84
Relationships between the s_i	85
The condition of a computing problem	86
Condition numbers	86
Spectral condition number of A with respect to its eigenproblem	87
Properties of spectral condition number	88
Invariant properties of condition numbers	89
Very ill-conditioned matrices	90
Perturbation theory for real symmetric matrices	93
Unsymmetric perturbations	93
Symmetric perturbations	94
Classical techniques	94
Symmetric matrix of rank unity	97
Extremal properties of eigenvalues	98
Minimax characterization of eigenvalues	99
Eigenvalues of the sum of two symmetries metrices	101

	Practical applications	102
	Further applications of minimax principle	103
	Separation theorem	103
	The Wielandt-Hoffman theorem	104
3.	ERROR ANALYSIS	
	Introduction	110
	Fixed-point operations	110
	Accumulation of inner-products	111
	Floating-point operations	112
	Simplified expressions for error bounds	113
	Error bounds for some basic floating-point computations	114
	Bounds for norms of the error matrices	115
	Accumulation of inner-products in floating-point arithmetic	116
	Error bounds for some basic $fl_2($) computations	117
	Computation of square roots	118
	Block-floating vectors and matrices	119
	Fundamental limitations of t-digit computation	120
	Eigenvalue techniques based on reduction by similarity transformations	123
	Error analysis of methods based on elementary non-unitary trans-	
	formations	124
	Error analysis of methods based on elementary unitary transformations	126
	Superiority of the unitary transformation	128
	Real symmetric matrices	129
	Limitations of unitary transformations	129
	Error analysis of floating-point computation of plane rotations	131
	Multiplication by a plane rotation	133
	Multiplication by a sequence of plane rotations	134
	Error in product of approximate plane rotations	139
	Errors in similarity transforms	140
	Symmetric matrices	141
	Plane rotations in fixed-point arithmetic	143
	Alternative computation of $\sin \theta$ and $\cos \theta$	145
	Pre-multiplication by an approximate fixed-point rotation	145
	Multiplication by a sequence of plane rotations (fixed-point)	147
	The computed product of an approximate set of plane rotations	148
	Errors in similarity transformations	148
	General comments on the error bounds	151
	Elementary Hermitian matrices in floating-point	152
	Error analysis of the computation of an elementary Hermitian matrix	153
	Numerical example	156
	Pre-multiplication by an approximate elementary Hermitian matrix	157
	Multiplication by a sequence of approximate elementary Hermitians	160
	Non-unitary elementary matrices analogous to plane rotations	162
	Non-unitary elementary matrices analogous to elementary Hermitian	163
	matrices Promultiplication by a convence of non-unitary metrices	165
	Pre-multiplication by a sequence of non-unitary matrices	166
	A priori error bounds	167
	Departure from normality	169
	Simple examples	170
	A posteriori bounds A posteriori bounds for normal matrices	170
	A TREMETER DOUBLES IOF HOURES INCOMEO	- · · ·

Rayleigh quotient	172
Error in Rayleigh quotient	173
Hermitian matrices	174
Pathologically close eigenvalues	176
Non-normal matrices	178
Error analysis for a complete eigensystem	180
Numerical example	181
Conditions limiting attainable accuracy	181
Non-linear elementary divisors	182
Approximate invariant subspaces	184
Almost normal matrices	187
SOLUTION OF LINEAR ALGEBRAIC EQUATIONS	
Introduction	189
Perturbation theory	189
Condition numbers	191
Equilibrated matrices	192
Simple practical examples	193
Condition of matrix of eigenvectors	193
Explicit solution	194
General comments on condition of matrices	195
Relation of ill-conditioning to near-singularity	196
Limitations imposed by t-digit arithmetic	197
Algorithms for solving linear equations	198
Gaussian elimination	200
Triangular decomposition	201
Structure of triangular decomposition matrices	201
Explicit expressions for elements of the triangles	202
Breakdown of Gaussian elimination	204
Numerical stability	205
Significance of the interchanges	206
Numerical example	207
Error analysis of Gaussian elimination	209
Upper bounds for the perturbation matrices using fixed-point arithmetic	211
Upper bound for elements of reduced matrices	212
Complete pivoting	212
Practical procedure with partial pivoting	214
Floating-point error analysis	214
Floating-point decomposition without pivoting	215
Loss of significant figures	217
A popular fallacy	217
Matrices of special form	218
Gaussian elimination on a high-speed computer	220
Solutions corresponding to different right-hand sides	221
Direct triangular decomposition	221
Relations between Gaussian elimination and direct triangular decom-	
position	223
Examples of failure and non-uniqueness of decomposition	224
Triangular decomposition with row interchanges	225
Error analysis of triangular decomposition	227
Evaluation of determinants	228
Cholesky decomposition	229
Onorona's docomposition	

	CONTENTS	XIII
	Symmetric matrices which are not positive definite	230
	Error analysis of Cholesky decomposition in fixed-point arithmetic	231
	An ill-conditioned matrix	233
	Triangularization using elementary Hermitian matrices	233
	Error analysis of Householder triangularization	236
	Triangularization by elementary stabilized matrices of the type M'_{H}	236
	Evaluation of determinants of leading principal minors	237
	Triangularization by plane rotations	239
	Error analysis of Givens reduction	240
	Uniqueness of orthogonal triangularization	241
	Schmidt orthogonalization	242
	Comparison of the methods of triangularization	244
	Back-substitution	247
	High accuracy of computed solutions of triangular sets of equations	249
	Solution of a general set of equations	251
	Computation of the inverse of a general matrix	252
	Accuracy of computed solutions	253
	Ill-conditioned matrices which give no small pivots	254
	Iterative improvements of approximate solution	255
	Effect of rounding errors on the iterative process	256
	The iterative procedure in fixed-point computation	257
	Simple example of iterative procedure	258
	General comments on the iterative procedure	260 261
	Related iterative procedures	261 261
	Limitations of the iterative procedure	262
	Rigorous justification of the iterative method	202
5.	HERMITIAN MATRICES	905
	Introduction	265
	The classical Jacobi method for real symmetric matrices	266
	Rate of convergence	267
	Convergence to fixed diagonal matrix	268 269
	Serial Jacobi method	269
	The Gerschgorin discs	270
	Ultimate quadratic convergence of Jacobi methods	271
	Close and multiple eigenvalues	273
	Numerical examples	274
	Calculation of $\cos \theta$ and $\sin \theta$	276
	Simpler determination of the angles of rotation	277
	The threshold Jacobi method	278
	Calculation of the eigenvectors	279
	Numerical example	279
	Error analysis of the Jacobi method	280
	Accuracy of the computed eigenvectors	281
	Error bounds for fixed-point computation	282
	Organizational problems	282
	Givens' method Givens' process on a computer with a two-level store	284
	Floating-point error analysis of Givens' process	286
	Floating-point error analysis of divotes process	287
	Fixed-point error analysis	288
	Numerical example Householder's method	290
	TIOUSOHOMOTO THOMACA	

xiv CONTENTS

	Taking advantage of symmetry	292
	Storage considerations	293
	Householder's process on a computer with a two-level store	294
	Householder's method in fixed-point arithmetic	294
	Numerical example	296
	Error analyses of Householder's method	297
	Eigenvalues of a symmetric tri-diagonal matrix	299
	Sturm sequence property	300
	Method of bisection	302
	Numerical stability of the bisection method	302
	Numerical example	305
	General comments on the bisection method	306
	Small eigenvalues	307
	Close eigenvalues and small β_i	308
	Fixed-point computation of the eigenvalues	312
	Computation of the eigenvectors of a tri-diagonal form	315
	Instability of the explicit expression for the eigenvector	316
	Numerical examples	319
	Inverse iteration	321
	Choice of initial vector b	322
	Error analysis	323
	Numerical example	325
	Close eigenvalues and small β_i	327
	Independent vectors corresponding to coincident eigenvalues	328
	Alternative method for computing the eigenvectors	330
	Numerical example	331
	Comments on the eigenproblem for tri-diagonal matrices	332
	Completion of the Givens and Householder methods	333
	Comparison of methods	334
	Quasi-symmetric tri-diagonal matrices	335
	Calculation of the eigenvectors	336
	Equations of the form $Ax = \lambda Bx$ and $ABx = \lambda x$	337
	Numerical example	339
	Simultaneous reduction of A and B to diagonal form	340
	Tri-diagonal A and B	340
	Complex Hermitian matrices	342
6.	REDUCTION OF A GENERAL MATRIX TO CONDENSE FORM	ED
	Introduction	345
	Givens' method	345
	Householder's method	347
	Storage considerations	350
	Error analysis	350
	Relationship between the Givens and Householder methods	351
	Elementary stabilized transformations	353
	Significance of the permutations	355
	Direct reduction to Hessenberg form	357
	Incorporation of interchanges	359
	Numerical example	360
	Error analysis	363
	Related error analyses	365

co	N	וידי	R: N	T	8

xv

	Poor determination of the Hessenberg matrix	368
	Reduction to Hessenberg form using stabilized matrices of the type M'_{H}	368
i	The method of Krylov	369
	Gaussian elimination by columns	370
	Practical difficulties	371
	Condition of C for some standard distributions of eigenvalues	372
	Initial vectors of grade less than n	374
	Practical experience	376
	Generalized Hessenberg processes	377
	Failure of the generalized Hessenberg process	378
	The Hessenberg method	379
	Practical procedure	380
	Relation between the Hessenberg method and earlier methods	381
	The method of Arnoldi	382
	Practical considerations	383
	Significance of re-orthogonalization	385
	The method of Lanczos	388
	Failure of procedure	389
	Numerical example	390
	The practical Lanczos process	391
	Numerical example	392
	General comments on the unsymmetric Lanczos process	394
	The symmetric Lanczos process	394
	Reduction of a Hessenberg matrix to a more compact form	395
	Reduction of a lower Hessenberg matrix to tri-diagonal form	396
	The use of interchanges	397
	Effect of a small pivotal element	398 399
	Emon analyzia	402
	The Hessenberg process applied to a lower Hessenberg matrix	402
	Relationship between the Hessenberg process and the Lanczos process	402
	Reduction of a general matrix to tri-diagonal form	404
	Comparison with Lanczos method	404
	Do examination of reduction to tri-diagonal form	405
	Reduction from upper Hessenberg form to Frobenius form	407
	Effect of small pivot	408
	Numerical example	408
	General comments on the stability	409
	Specialized upper Hessenberg form	410
	Direct determination of the characteristic polynomial	410
_	EIGENVALUES OF MATRICES OF CONDENSED FORM	MS
7.		413
	Introduction	413
	Explicit polynomial form	416
	Condition numbers of explicit polynomials	417
	Some typical distributions of zeros	421
	Final assessment of Krylov's method	421
	General comments on explicit polynomials	423
	Tri-diagonal matrices	426
	Determinants of Hessenberg matrices	427
	Effect of rounding errors	428
	Floating-point accumulation	429
	Evaluation by orthogonal transformations	

CONTENTS

Evaluation of de	eterminants of general matrices	431
	eigenvalue problem	432
	inations of the characteristic polynomial	432
Le Verrier's met		434
Iterative method	ds based on interpolation	435
Asymptotic rate	-	436
Multiple zeros	•	437
	functional relationship	439
The method of l	oisection	440
Newton's metho	\mathbf{d}	441
Comparison of 1	Newton's method with interpolation	442
-	cubic convergence	443
Laguerre's meth	<u> </u>	443
Complex zeros		446
Complex conjug	ate zeros	447
Bairstow's meth		449
	Bairstow method	450
Practical consid		452
	ng errors on asymptotic convergence	453
The method of	• • •	453
Successive linea		455
	thologically close eigenvalues	457
Other interpolat		458
-	ing the use of a derivative	459
	ceptance of a zero	461
Effect of roundi	- ·	462
Suppression of	•	464
	essenberg matrices	465
	diagonal matrices	468
	tations or stabilized elementary transformations	469
Stability of the		472
General comme		474
Suppression of		474
	computed quadratic factors	475
	nts on the methods of suppression	476
	es of convergence	478
Convergence in	•	478
Complex zeros		481
Recommendation	ons	482
Complex matric		483
-	ning an independent parameter	483
8. THE LR AN	D QR ALGORITHMS	
Introduction		485
	vith complex eigenvalues	486
The LR algorit		487
	nvergence of the A_s	489
	e Hermitian matrices	493
	gate eigenvalues	494
Introduction of		498
Numerical exar	-	499
	the modified process	501

CONTENTS	xvii
Preliminary reduction of original matrix	501
Invariance of upper Hessenberg form	502
Simultaneous row and column operations	504
Acceleration of convergence	505
Incorporation of shifts of origin	506
Choice of shift of origin	507
Deflation of the matrix	509
Practical experience of convergence	510
Improved shift strategy	511
Complex conjugate eigenvalues	512
Criticisms of the modified LR algorithm	515
The QR algorithm	515
Convergence of the QR algorithm	516
Formal proof of convergence	517
Disorder of the eigenvalues	519
Eigenvalues of equal modulus	520
Alternative proof for the LR technique	521
Practical application of the QR algorithm	523
Shifts of origin	524
Decomposition of A_s	525
Numerical example	527
Practical procedure	527
Avoiding complex conjugate shifts	528
Double QR step using elementary Hermitians	532
Computational details	534
Decomposition of A_s	535
Double-shift technique for LR	537
Assessment of LR and QR algorithms	538
Multiple eigenvalues	540
Special use of the deflation process	543
Symmetric matrices	544
Relationship between LR and QR algorithms	545
Convergence of the Cholesky LR algorithm	546
Cubic convergence of the QR algorithm	548
Shift of origin in Cholesky LR	549
Failure of the Cholesky decomposition	550
Cubically convergent $\hat{L}R$ process	551
Band matrices	553
QR decomposition of a band matrix	557
Error analysis	561
Unsymmetric band matrices	562
Simultaneous decomposition and recombination in QR algorithm	565
Reduction of band width	567
9. ITERATIVE METHODS	570
Introduction	570 570
The power method	570 571
Direct iteration with a single vector	571 572
Shift of origin	573
Effect of rounding errors	576
Variation of p	577
Ad has shaine of m	011

CONTENTS

xviii

Aitken's acceleration technique	578
Complex conjugate eigenvalues	579
Calculation of the complex eigenvector	581
Shift of origin	582
Non-linear divisors	582
Simultaneous determination of several eigenvalues	583
Complex matrices	584
Deflation	584
Deflation based on similarity transformations	585
Deflation using invariant subspaces	587
Deflation using stabilized elementary transformations	587
Deflation using unitary transformations	589
Numerical stability	590
Numerical example	592
Stability of unitary transformations	594
Deflation by non-similarity transformations	596
General reduction using invariant subspaces	599
Practical application	601
Treppen-iteration	602
Accurate determination of complex conjugate eigenvalues	604
Very close eigenvalues	606
Orthogonalization techniques	606
Analogue of treppen-iteration using orthogonalization	607
Bi-iteration	609
Numerical example	610
Richardson's purification process	614
Matrix squaring	615
Numerical stability	616
Use of Chebyshev polynomials	617
General assessment of methods based on direct iteration	618
Inverse iteration	619
Error analysis of inverse iteration	620
General comments on the analysis	621
Further refinement of eigenvectors	622
Non-linear elementary divisors	626
Inverse iteration with Hessenberg matrices	626
Degenerate cases	627
Inverse iteration with band matrices	628
Complex conjugate eigenvectors	629
Error analysis	631
Numerical example	633
The generalized eigenvalue problem	633
Variation of approximate eigenvalues	635
Refinement of eigensystems	637
Numerical example	639
Refinement of the eigenvectors	641
Complex conjugate eigenvalues	643
Coincident and pathologically close eigenvalues	644
Comments on the ACE programmes	646
BIBLIOGRAPHY	649
INDEX	657