CONTENTS

Pre	Preface			
1	SOM	IE ELEMENTS OF ERROR ANALYSIS		
	1.1 1.2 1.3 1.4 1.5 1.6	Introduction Errors in Computation The Machine Rounding Unit Backward Roundoff Analysis Case Study 1: Triangular Matrix Inversion Case Study 2: The Normal Equations Case Study 3: The Hat Matrix Notes and References	1 4 13 16 22 26 28 35	
2	CON	ICEPTS FROM LINEAR ALGEBRA AND ANALYSIS		
	2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9	Introduction Elementary Concepts from Analysis Wilkinson Numbers Norms Linear Transformations Minkowski Sums and Cartesian Products Computing Wilkinson Numbers Operator Norms Differentiation	37 38 42 44 47 52 53 58 59	
3	DIRECTED GRAPHS			
	3.1 3.2 3.3 3.4 3.5 3.6	Introduction Arithmetic Graphs The Weak Composition Model Sums of Path Products Differentiation in Graphs Improved Calculation of Derivatives	63 66 71 73 77 82	

vi Contents

l so	FTWARE FOR ROUNDOFF ANALYSIS		
4.1	Introduction	85	
4.2	Rounding and Perturbations of the Computational		
	Problem	86	
4.3	Comparing Rounding Errors with Problem		
	Sensitivity	89	
4.4		94	
4.5		96	
4.6		103	
4.7	Using the Software Package	105	
5 CA	SE STUDIES		
5.1	Case Study 4: The Cholesky Factorization	113	
5.2		116	
5.3	· · · · · · · · · · · · · · · · · · ·		
	Improvement	120	
5.4	Case Study 7: Gauss-Jordan Elimination	121	
5.5			
	Least-Squares Problems	122	
5.6	Case Study 9: Rational QR Methods	125	
5.1	Case Study 10: Downdating the QR Factorization	128	
5.8	3 Case Study 11: The Characteristic Polynomial	129	
5.9	Case Study 12: Representations of Symmetric		
	Matrices	131	
5.	10 Case Study 13: Variants of the Gram-Schmidt		
	Method	134	
5.	11 Case Study 14: Cholesky Factors after Rank-One		
	Modifications	137	
Append	ix: Fast Givens Transformations	141	
Bibliography			
Index			
muex			