CONTENTS

Krät a	zschmar,M.: Inverse-isotone mappings, M-matrices, M-functions nd their application to nonlinear block-Gauss-Seidel iterations	9
	. Introduction and notations . Inverse-isotone mappings, M-matrices, M-functions and their	9
	basic properties	10
ز	. Block-M-functions and the convergence of nonlinear block- Gauss-Seidel and block-Jacobi iterations	15
L	zschmar, M.: Inverse-positive type discretization of the aplace operator and monotone methods for solving mildly onlinear elliptic partial differential equations	19
1	. Mildly nonlinear PDE	19
2	Finite-difference equations and convergence as h → 0 Monotone enclosure for solving mildly nonlinear elliptic	20
	PDE and difference equations	26
Vans O	elow,R.: Monotonicity preserving properties of the method f lines for parabolic equations	37
2	. Introduction . The parabolic differential equation and stability properties	37 37
-	Foundations of the studies of nonlinear stability for differential equations	39 41
4	. The method of lines . Stability statements	41 43
	. Application	43 50
Schn i	merr, F.; Scholz, S.; Vanselow, R.: Error bounds for characteristic nitial value problems of hyperbolic differential equations	53
1	. Introduction	53
2	The inclusion theorem of Schröder Theorems on error bounds for the problem (1.3)	53 54 55 63
	Application of the inclusion theorem for error estimation Numerical examples	63 69
	Appendix	76
Reit	mann, V.: Two-sided bounds and norm bounds for the solutions of semilinear ordinary differential equations	83
Scho	olz,S.: Modified Rosenbrock methods with built-in global error	94
	estimation and time-lagged Jacobian	94
_	. Introduction . On the existence of mRm's with global error estimation	95
3	MRm's of 2nd and 3rd order with built-in global error estimation	100
Sei	Cert,P.: Some experiences in computer codes for stiff and large-scale ordinary differential equations	105
	1. Stiff differential equations	105
•	Methods and codes for stiff systems	106
j	3. Numerical tests with various examples 4. Computational experiments with randomly generated examples	112
	Modifications of the codes for large-scale ODEs	117

Elschner, H.; Klix, W.; Spallek, R.: Numerical simulation of semiconductor devices	123
 Introduction Device simulation by solving semiconductor equations Simulation of the doping profile by solving diffusion 	123 125
equations 4. Thermal simulation by solving diffusion equations 5. Summary	150 153 158
Groβmann, Ch.: Mixed finite element methods and penalties for weakly nonlinear partial differential equations	162
1. Mixed FEM for linear problems 2. Nonlinear variational inequalities and a priori estimations 3. Mixed variational formulation and penalties 4. Determination of the growth function $\mu(.)$ 5. A numerical realization for obstacle problems	162 164 169 176 177
Pfeifer, E.: On the Green function for a finite difference approximation of a two-dimensional Dirichlet problem	182
1. Introduction 2. The Green function for the operator $\partial_x \overline{\partial}_x + \lambda$, $\lambda > 0$, with homogeneous Dirichlet conditions	182 183
 The Green function for Δ^(h) with homogeneous Dirichlet conditions Nonhomogeneous Dirichlet conditions 	188 191
Riedrich, Th.: Functional analytic aspects of the R.Iglisch	
continuation process for the Dirichlet problem $\Delta u = F(u,x)$ with $\frac{\partial F(u,x)}{\partial u} \ge 0$	193
 Preliminaries Assumptions on F(u,x) A priori estimates for the nonlinear boundary value problem 	193 195
$(\Delta u)(x) = F(u(x),x)+(\Delta v)(x); u T = v T$	196
4. The nonlinear integral operator Ĝ	198
5. The completely continuous vector field $A = Id + G$	199