
2

Quark Flavor Interaction

The description of the low-energy physics of hadrons requires to model the in-
teraction of the quark constituents. The observation that the (current) quark
masses of the up (u) and down (d) quarks (and eventually the strange (s)
quark) are significantly smaller than typical strong interaction energy scales
serves as a major input. In a first approach it is thus reasonable to ignore the
effects of the current quark masses. In that approximation axial transforma-
tions leave the QCD Lagrangian invariant and an additional global symmetry,
the so-called chiral symmetry [1], emerges. This symmetry represents an im-
portant tool for model building because the models should be consistent with
chiral symmetry. Any such model describes the interaction of light quarks
with different flavors: up, down and eventually strange; hence the notion of
quark flavor dynamics.

2.1 Chiral Symmetry

In the case of massless Dirac fermions that interact with boson fields via a
vector interaction (as in QCD), left- and right-handed components

ΨL,R =
1
2

(1 ∓ γ5)Ψ (2.1)

of the 4 × 4 spinors Ψ decouple. As a consequence the QCD Lagrangian
with zero current masses decomposes into a sum of two Lagrangians that
contain only right-(left-) handed fields, respectively. These two Lagrangians
are invariant under global unitary flavor transformations of the correspond-
ing right-(left-) handed fields, so that the QCD Lagrangian possesses an
UL(Nf)×UR(Nf) symmetry. Here Nf is the number of quark flavors whose cur-
rent quark masses are ignored. Depending on whether we consider the strange
current quark mass as large or small we have Nf = 2 or Nf = 3, respectively.
This symmetry group factorizes according to
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6 2 Quark Flavor Interaction

UL(Nf) × UR(Nf) ∼= UL+R(1) × UL−R(1) × SUL(Nf) × SUR(Nf) (2.2)

and is called the chiral group. The invariance under UL+R(1) is responsible for
the conservation of baryon number whereas UL−R(1) is subject to a quantum
anomaly [2, 3]. This results in 2Nf − 1 conserved flavor currents. The 2Nf

flavor currents are most conveniently presented as linear combination of the
left- and right-handed vector currents that are eigenstates of parity: the vector
current Jaμ and the axial vector current Aaμ,

Jaμ = q̄Lγμ
λa
2
qL + q̄Rγμ

λa
2
qR = q̄γμ

λa
2
q

Aaμ = −q̄Lγμ
λa
2
qL + q̄Rγμ

λa
2
qR = q̄γμγ5

λa
2
q . (2.3)

Here λa (a = 1, . . . , N2
f − 1) are the Gell–Mann matrices of SU(Nf) and

λ0 =
√

2/Nf 1 is proportional to the unit matrix in flavor space. The spinors
are additionally column vectors with Nf entries of the quark flavors

q =

⎛

⎜
⎜
⎜
⎝

Ψ1

Ψ2

...
ΨNf

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

Ψu

Ψd

...
ΨNf

⎞

⎟
⎟
⎟
⎠
. (2.4)

The properties of these fermion fields under infinitesimal chiral transforma-
tions, (2.2), are summarized in Table A.1 of Appendix A. In the limit of
vanishing current quark masses the above currents, apart from A0

μ, are con-
served and that property should be reproduced within any model. In case
these masses are non-zero but nevertheless identical for all flavors the vector
current Jaμ is still conserved for a = 0, . . . , Nf . The non-conservation of A0

μ

can, e.g., be computed in a functional language [4] where it arises from the
measure of the fermion fields not being invariant under chiral transformations.
This non-conservation can be quantified,

√
Nf

2
∂μA0

μ = − g2

8π2
tr
(
F̃μνF

μν
)

+ · · · . (2.5)

Here the trace goes over all discrete indices of the vector gauge fields to which
the fermions, (2.4) couple, e.g., color, charge and/or flavor. Furthermore Fμν
is the field strength of the vector field that couples with coupling constant
g to the fermions and F̃μν is dual to Fμν . The ellipsis refer to contribu-
tions that stem from finite current quark masses. A direct consequence of this
anomaly is the neutral pion decay into two photons. That effect is discussed in
C.4.

2.2 Dynamical Breaking of Chiral Symmetry

In general, symmetries like (2.2) can be realized by the particle content of the
theory in two scenarios:
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• Wigner–Weyl realization: the vacuum (lowest energy) configuration is
invariant under the symmetry and the generators of the symmetry trans-
form degenerate physical states into one another.

• Nambu–Goldstone realization (also called spontaneous symmetry break-
ing): the vacuum configuration is not invariant under the symmetry, rather
the lowest energy state is degenerate. Operators that do not transform
as singlets under the symmetry develop non-zero vacuum expectation val-
ues (VEV). Acting with the symmetry generators on such operators excites
massless modes, the so-called Goldstone bosons (instead of transforming
into other physical states). States that are related to one another by gen-
erators that do not commute with operators that possess non-zero VEVs
are not degenerate.

Now it is for nature to decide which realization is put into effect. Since
states of different chirality carry opposite parity, the question to be answered
is whether or not the states of opposite parity are degenerate. For this purpose
it is illuminating to consider the spectrum of the low-lying mesons as sketched
in Fig. 2.1. Obviously the degeneracy expected in the Wigner–Weyl realiza-
tion is not seen for the scalar and pseudoscalar mesons. While scalar meson
masses are several hundred MeV (these states are quite broad, in addition)
the pseudoscalar mesons start at a little above 100 MeV. As a matter of fact,
and as we will recognize later, their small masses are solely due to non-zero
current quark masses. Stated otherwise, the pseudoscalar mesons would have
zero mass in the ideal world of massless current quarks. We conclude that
chiral symmetry is realized in the Nambu–Goldstone phase with the pseu-
doscalar mesons being the (would-be) Goldstone modes. The only exception
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Fig. 2.1. Sketch of the spectrum of the low-lying mesons. Left panel: pseu-
doscalars (0−), vectors (1−) and axial vectors (1+); right panel: scalars (0+). Data
taken from the particle data group [5]. This graphic is to illustrate the difference
between the 0− and 0+ spectra. An updated account on the spectra in the scalar
sector is given in the proceedings [6] and references therein
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is the η′ (or a linear combination of octet and singlet ηs) that remains massive
even when the current quark masses are sent to zero. QCD does not have a
UA(1) symmetry because of the anomaly (2.5) and the fact that there are field
configurations in QCD (instantons) for which the spatial integral of the right
hand side of (2.5) does not vanish even though this four dimensional integral
can be transformed into a three dimensional surface integral. Instantons will
be discussed in Sect. 2.6; here it suffices to remark that they induce inter-
actions [7] that upon bosonization (to be described in the following section)
provide a mass term for pseudoscalar flavor singlet meson [8, 9]. This explains
the absence of a (would-be) Goldstone boson for the spontaneously broken
UA(1) symmetry.

Hence the meson spectrum suggests that in the limit of massless quarks
only the vector symmetry is realized in the spectrum while the axial symmetry
is spontaneously broken. That is, there is an operator that is invariant under
vector transformations but not under axial transformations. Noting that vec-
tor transformations do alter left- and right-handed spinors equally while axial
transformations do not and that

Ψ̄Ψ = Ψ̄LΨR + Ψ̄RΨL , (2.6)

it is perspicuous that the simplest such operator is q̄q and that the dynamics
of QCD imply a non-zero quark condensate,

〈q̄q〉 �= 0 . (2.7)

Model building therefore requires to

(i) Find a simple mechanism that yields such a VEV or
(ii) Start from a formulation that has (2.7) built in.

In the next subsection we will discuss the Nambu–Jona–Lasinio model [10, 11]
as a (simple) example to follow path (i). On the other hand, treatments like
chiral perturbation theory [12, 13, 14, 15, 16] are designed according to (ii).

2.3 The Nambu–Jona–Lasinio Model

To be specific we will consider the Nambu–Jona–Lasinio (NJL) model de-
scribed by the Lagrangian (For reviews see, e.g., [17, 18, 19].)

LNJL = q̄(i∂/− m̂0)q + 2G1

N2
f −1∑

a=0

((
q̄
λa
2
q

)2

+
(
q̄
λa
2

iγ5q

)2
)

−2G2

N2
f −1∑

a=0

((
q̄
λa
2
γμq

)2

+
(
q̄
λa
2
γ5γμq

)2
)

, (2.8)

where m̂0 = diag (mu,md, . . . ,mNf ) is the current quark mass matrix and
G1,2 are two so-far undetermined coupling constants. The discussion and re-
sults of Appendix A immediately show that the interaction terms in (2.8) are
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invariant under chiral transformations, (2.2). Hence chiral symmetry is only
broken by the small current quark masses.

This type of model can, e.g., be motivated from QCD by Fierz-trans-
formation of the color current–current interaction that emerges after
integrating out the gluon fields [19] and omitting 1/NC-suppressed diquark-
correlations. An easily traceable calculation is that of [20]. Here we only men-
tion that this scenario yields Gi ∝ g2

QCD × O(N0
C), where gQCD is the QCD

gauge coupling. Later we will argue that a sensible generalization of QCD to
arbitrary NC requires gQCD = O(1/

√
NC), cf. (4.1), and thus Gi = O(1/NC).

We want to express the quark (fermion) theory in (2.8) as an effective
meson (boson) theory. Since the interaction is quartic in the quark spinors, this
is actually straightforward and merely requires the completion of squares [21].
Consider, e.g.,

1
8G1

S2
a − Saq̄

λa
2
q =

1
8G1

(
Sa + 4G1q̄

λa
2
q

)2

− 2G1

(
q̄
λa
2
q

)2

(2.9)

and functionally integrate over the auxiliary (meson) field Sa,

exp

[

i
∫

d4x 2G1

(
q̄
λa
2
q

)2
]

=

∫
[DSa] exp

[
−i
∫

d4x

(
1

8G1
S2

a + Saq̄
λa
2
q

)]
(2.10)

up to a normalization constant. Of course, analogous relations hold for the
remaining interaction terms. Combining all auxiliary fields into a single matrix
valued meson field Φ allows us to formally write the generating functional as

ZNJL =
∫

[Dq] [Dq̄] exp
(

i
∫

d4xLNJL

)

=
∫

[DΦ] exp
(
− i

2

∫
d4x trF

[
(Φ − m̂0)Q−1 (Φ − m̂0)

]
)

×
∫

[Dq] [Dq̄] exp
(

i
∫

d4xq̄ (i∂/− Φ · Λ) q
)
. (2.11)

Here “trF” denotes the trace in flavor space and the current quark mass ma-
trix has been absorbed into a constant shift of Φ. Furthermore shorthand
(matrix) notations are utilized for the flavor–Dirac structure (Λ) and the cou-
pling constants (Q) that occur in the interaction terms of (2.8). Rather than
giving them explicitly, we decompose the generic meson field Φ into irreducible
Lorentz tensors

Φ · Λ = S + iγ5P − V/ −A/γ5 . (2.12)

Here S, P , V and A are scalar, pseudoscalar, vector and axial-vector fields,
respectively. They are all hermitian matrices in flavor space. Furthermore the
decomposition, (2.12), provides a transparent expression
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1
2 tr(Φ − m̂0)Q−1(Φ − m̂0) = 1

4G1
tr((S − m̂0)2 + P 2)

− 1
4G2

tr(VμV μ + AμA
μ) , (2.13)

for the argument that appears in the exponential of the mesonic part of the
generating functional. When convenient, we will use Φ as a short-hand nota-
tion for all fields S, P , V and A and combine scalar and pseudoscalar fields
to M = S + iP and M † = S − iP .

The generating functional factorizes into mesonic and fermionic parts with
a generalized Yukawa interaction between mesons and fermions. In (2.11) the
quark field appears bilinearly in the exponent and can now be integrated out.
This integration yields the determinant of the operator in between the spinors.
Using the identity log Det(A) = Tr log(A) finally leads to a purely mesonic
theory A[Φ] that is given by

ZNJL =
∫

[DΦ] exp (iA[Φ]) with

A[Φ] = −1
2

∫
d4x (Φ − m̂0)Q−1(Φ − m̂0) − i Tr log(i∂/− Φ). (2.14)

Here Tr denotes the functional trace that also includes space–time integration
on top of summing over discrete indices. The quarks carry color degrees of
freedom. Yet the NJL-model interaction is color neutral, so the associated
trace merely causes multiplication by NC, the number of color degrees of
freedom, i.e., Tr → NCTrDF, with the latter trace involving only Dirac and
flavor discrete indices (together with space–time integration).

In (2.14) we have essentially met our goal to bosonize the fermion model.
Of course, the interaction in (2.8) has been “invented” to exactly facilitate
that goal. In (2.14) we sum up all one fermion loop diagrams, i.e., A[Φ] is
complete at O(�). The full quantum action of the NJL-model also contains
higher order contributions. In the present treatment they do not occur because
we have treated the meson fields Φ classically. Higher order terms arise from
their quantum properties. For that reason the action, (2.14) is sometimes
called the semi-bosonized NJL-model.

Note that the action A[Φ] is a non-linear, even non-polynomial function
of the meson field Φ; even more, Tr log(i∂/ − Φ) is non-local. The quantum
theory defined by (2.14) is, however, equivalent to the underlying NJL model
defined by the Lagrangian (2.8). On the other hand, the generating functional
(2.14) has the advantage that it may be treated semiclassically. In particu-
lar, according to (2.10) a stationary point for Φ is to be identified with a
VEV of a quark bilinear. This paves the way toward the second goal at which
we aim, a microscopic quark model with a non-zero translationally invariant
stationary point S0 ∼ G1〈q̄q〉 to parameterize spontaneous chiral symme-
try breaking. Unfortunately the action, (2.14) is not yet suited for actual
calculations because of ultraviolet divergences in Tr log(i∂/ − Φ). A regular-
ization prescription is needed, and as the model (2.8) is not renormalizable
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(the coupling constants Gi have dimension 1/(mass)2), the model itself is only
completely defined when a regularization scheme is provided. For definiteness
we will use Schwinger’s proper time regularization [22] which introduces an
O(4)-invariant cut-off Λ after continuation to Euclidean space that is enforced
by the Wick rotation.1 Even though other regularization schemes give similar
results [25], its choice is part of the model building. In Euclidean space it
is necessary to consider the real and imaginary parts of the non-local piece
separately

AF := −i Tr log(i∂/ − Φ · Λ) Wick �
rotation

AR + AI , (2.15)

with

AR = 1
2Tr log(D/ †

ED/E) and AI = 1
2Tr log

(
(D/ †

E)−1D/E

)
. (2.16)

Here D/E =
∑4

μ=1DEμγμ is the argument of the logarithm in (2.15) analyti-
cally continued to Euclidean space (AF is real in Minkowski space). The real
part AR diverges for large momenta p whereas the imaginary part AI does not
contain ultraviolet divergencies, i.e., it is finite without regularization. There-
fore one has the option of keeping AI unregularized, or to regularize it in a
way consistent with the regularization of AR. Note that this defines two dif-
ferent models.2 For the real part of the action the proper time regularization
consists in replacing the logarithm by a parameter integral

AR → −1
2

∫ ∞

1/Λ2

ds
s

Tr exp
(
−sD/ †

ED/E

)
, (2.17)

which for Λ → ∞ reproduces the logarithm up to an irrelevant additive con-
stant, cf. (B.18). For finite Λ the contributions from small s in the integral
are left out. On the other hand, only the small s values are sensible to the
regime where the expectation value of D/ †

ED/E is large. That is, the contribu-
tions from large momenta in the functional trace are suppressed. Hence Λ is
an ultraviolet cut-off. (The notation Λ for this cut-off should not be confused
with the abbreviation for the flavor–Dirac structure in (2.11) and (2.12).)

To discuss chiral symmetry breaking it suffices to consider AR as regu-
larized in (2.17) and omit (axial)vector interactions for the time being, i.e.,
Vμ = Aμ = 0. Variation with respect to the scalar and pseudoscalar fields
yields the Dyson–Schwinger or gap equations. By symmetry, their translation-
ally invariant solutions must be Lorentz scalar and of neutral flavor. However,

1 Analogous formulations in Minkowski space are reported in [23, 24], see also
Sect. 7.7.

2 The proper reproduction of the anomaly, (2.5) seems to prohibit regularization
of AI, [26]; see, however, [27]. As will be discussed in Chap. 3, the require-
ment that soliton configurations possess integer baryon number corroborates non-
regularization of AI.
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different current quark masses prevent the solution from being proportional to
the unit matrix in flavor space. We therefore parameterize 〈Mij(x)〉 = δijmi

for i, j = 1, . . . , Nf . From (2.15) it is obvious that mi acts as a mass for the
quark of flavor i. Therefore a non-zero value is called constituent quark mass.
In the proper time regularization the explicit form of the gap equation is (The
calculation may be traced from Appendix B.)

mi = m0,i − 2G1〈q̄q〉i where 〈q̄q〉i = −m3
i

NC

4π2
Γ
(
−1,

m2
i

Λ2

)
. (2.18)

The notation already identifies the quark condensate q̄q as it is obtained
from the stationary point of the scalar field, (2.10). The interpretation in
terms of the quark loop is apparent from (B.15). This leads to the graphical
representation

imi = m0, i     + i

with the mass of the quark in the loop being mi, the dynamically generated
constituent quark mass.

We see from Fig. 2.2 that in the chiral limit (m0 = 0) the quark conden-
sate and therefore also the quark constituent mass is zero when the coupling
constant G1 stays below a critical value whose precise datum depends on
the cut-off, Λ. Above this critical value the trivial solution coexists with a

0 10 20 30 40

G1Λ2

0

200

400

600

m
/M

eV

m0 = 20MeV

m0 = 0

Fig. 2.2. The solution of the gap equation (2.18) for vanishing current mass m0 =
20 MeV (solid line) and m0 = 0 (dashed line) as function of the coupling constant
G1. In this specific computation Λ = 630 MeV has been chosen
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non-trivial one. The effective potential of a constant scalar field in the chiral
limit [20]

Veff(M) =
1

2G1
Σ2 +

NC

16π2

[
Σ4Γ

(
0,

Σ2

Λ2

)
−
(
Σ2 − Λ2

)
Λ2e−Σ2/Λ2

]
, (2.19)

where Σ =
√

tr(MM †)/Nf shows that the solution with Σ �= 0 is energetically
favored. Commonly the so-defined Σ is called the chiral radius.

Having established the existence of a non-trivial VEV 〈q̄q〉, we still have
to verify that massless pions emerge, at least for m0,i = 0. Fortunately the
examination of pion properties also allows us to assign a physical meaning
to the above introduced and so far undetermined ultraviolet cut-off Λ. For
simplicity we will omit flavor symmetry breaking in this context and call m
the solution to the flavor symmetric gap equation, (2.18) with m0,i ≡ m0.
The effects of m0,i �= m0,j �=i may be traced from the literature [28, 29]. The
Goldstone modes are expected to be orthogonal to the mode carrying the
VEV. We therefore parameterize

M = mU(x) with U(x) = exp

⎡

⎣i
N2

f −1∑

a=1

φa(x)
λa
2

⎤

⎦ , (2.20)

which also defines the chiral field, U(x). Substituting M and U = 1 +
iφa(x)λa/2 into (2.12) shows that the real fields φa(x) couple to the quarks
via γ5, as pseudoscalars should. In addition, this ensures that the modes φa
are indeed orthogonal to the scalar modes that contain the VEV. The main
task is to expand the (regularized) action up to quadratic order in φa(x). The
techniques for this calculation are provided in Appendix B. The result is most
conveniently presented in (Euclidean) momentum space

A(2) =
1
2

∫
d4q

(2π)4
∑

a

φ̃a(q)D−1(q2)φ̃a(−q) , (2.21)

where the superscript indicates the expansion up to second order and φ̃a(q) is
the Fourier transformation of φa(x). The first term in the inverse propagator

D−1(q2) = −m0m

G1
− q2f(q2) with

f2(q2) = m2 NC

4π2

∫ 1

0

dx Γ
(

0,
m2 + x(1 − x)q2

Λ2

)
(2.22)

originates from the local part of the action A, (2.14). The mass of φa(x) as
extracted from the pole condition, D−1(−m2

φ) = 0 obviously vanishes in the
chiral limit m0 = 0. Identifying the modes φa(x) as pions and comparison with
the non-linear σ model (or coupling an external axial current to A, cf. Sect. 2.5
and (B.25)) furthermore shows that the pion decay constant is
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f2
π = f2(−m2

π) . (2.23)

Imposing the empirical values fπ = 93 MeV and mπ = 138 MeV thus yields
a further relation between the cut-off Λ and the constituent quark mass m.
In practice a value for the constituent quark mass m ∼ 400 MeV is chosen
for the reason discussed later in Sect. 5.6. Equation (2.23) then provides the
corresponding value Λ ∼ 630 MeV. Subsequently the gap equation, (2.18)
yields the coupling constant G1 and finally the current quark mass m0 is
determined from D−1(−m2

π) = 0,

m2
πf

2
π =

m0m

G1
. (2.24)

Stated otherwise, the constituent quark mass is considered as the only ad-
justable model parameter.

We also confirm an important statement of Sect. 2.2: The pion would
indeed be a massless Goldstone boson if the current quark mass, m0, were
zero.

Similar computations have been applied to the vector interactions. These
investigations determine the coupling constant G2 from the empirical value of
the ρ-meson massmρ = 770 MeV. In particular the vector interactions contain
π–A1 mixing and the model yields the estimate [30]

m2
A1

= m2
ρ + 6m2 + O

(
1
Λ2

)
(2.25)

according to which the axial-vector mesons are significantly heavier than the
vector mesons. Approximate results for the (axial)vector mesons can also be
obtained in the gradient expansion that will be subject of the next section.
Furthermore exhaustive studies of flavor symmetry breaking effects in the me-
son sector have been performed. Concerning the three-flavor model it should
be noted that there is only one additional parameter, the strange quark cur-
rent mass.3 Hence the kaon decay constant, fK is a prediction. This prediction
comes out a bit on the low side: fK/fπ ≈ 1.11 vs. 1.21 empirically [5], never-
theless it is in the right ball park. For further details we refer the interested
reader to original studies [29, 30, 31] and review articles [17, 18, 19]. In any
event, the above discussion is sufficient as a set-up of the model to discuss
baryons as solitons in Chap. 3.

We want to conclude this section by discussing the transformation prop-
erties of the (pseudo)scalar field M under global chiral transformations. After
all, the model for the quark flavor dynamics was built to reflect the chiral
properties of QCD. According to the bosonization prescription we explicitly
write the flavor indices (color and spin degrees are summed),

3 We stress that the current quark masses in (2.8) are those of the model. They are
model parameters and should not be confused with those in QCD.
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Mij(x) =
N2

f −1∑

a=0

Ma(x)λ(ij)
a ∝

N2
f −1∑

a=0

λ(ij)
a

[

q̄m
λ

(mn)
a

2
qn − q̄mγ5

λ
(mn)
a

2
qn

]

.

(2.26)
In general one would expect a bilocal expression on the right hand side. How-
ever, here we are only interested in global aspects and we may ignore that
complication. For the same reason we omit constants of proportionality. From
the completeness relation for SU(N) generators (Ta = λa/2)

N2−1∑

a=1

(Ta)ij (Ta)kl =
1
2
δilδjk −

1
2N

δijδkl (2.27)

we find
Mij(x) ∝

1
2

[q̄jqi − q̄jγ5qi] = q̄RjqLi , (2.28)

with explicit reference to chirality. Under global chiral rotations

qL → L qL and qR → RqR (2.29)

with L and R constant SU(Nf) matrices, we thus induce

M(x) −→ LM(x)R† . (2.30)

This, of course, is consistent with the requirement that

q̄
(
i∂/−MPR −M †PL

)
q (2.31)

is chirally invariant. Seemingly trivial, the coexistence of (2.29) and (2.30) is a
very important result: We have just learned how to translate the chiral trans-
formation properties of QCD to the meson fields M . Hence we may identify
the internal symmetries of a model for M with those of QCD! Since most of
the QCD hadron matrix elements are to be computed from symmetry currents
we are allowed to identify the QCD matrix elements with those computed in
the model. This is indeed the only venue which permits model calculations of
QCD observables. Conversely, model calculations that are based on identify-
ing model degrees of freedom with those of QCD (rather than just identifying
currents) are less trustworthy.

2.4 Gradient Expansion

The bosonized action, (2.14), and its regularized version, (2.17), are non-local
meson theories. Many of the technical problems in the above-described cal-
culations emerge from this non-locality. It transforms into an infinite series
of local derivative terms by a Taylor expansion in the separation. The co-
efficients of these derivative terms are determined from the non-local action
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via the gradient expansion [32, 33, 34]. Assuming that the meson fields Φ
vary only slowly in space and thereby mitigating non-local effects, we may
approximate this Taylor series by truncating it to a low, say next-to-leading,
order. Here we will briefly gather the main results of this approximation for
the NJL model, in particular because it serves to construct effective meson
theories in which the construction of soliton solutions and their quantization
are significantly more perspicuous than in bosonized NJL-type models. In this
discussion of the gradient expansion we will mostly follow the treatment of
[30]. That calculation counts (axial)vector meson fields at the same order as
a single derivative which is suggested by covariant derivatives. For the sum
of the local part of the action, (2.14), and the regularized real part of the
determinant, (2.17), it yields,

AR =
∫

d4x

{
−Veff(M) +

1
4G2

tr (VμV μ +AμA
μ)

+
1

2g2
V

tr
[
3∇νM

†∇νM − FVμνF
V μν − FAμνF

Aμν
]
}

+ · · · (2.32)

where
∇νM = ∂νM + i[V ν ,M ] − iγ5{Aν ,M} (2.33)

denotes the covariant derivative of the scalar–pseudoscalar fieldM . The vector
and axial-vector parts of the field strength tensor are

FV
μν = ∂μVν − ∂νVμ + i[Vμ, Vν ] + i[Aμ, Aν ] ,

FAμν = ∂μAν − ∂νAμ + i[Aμ, Vν ] + i[Vμ, Aν ] , (2.34)

and the effective potential Veff is given in (2.19). The resulting coefficient

1
g2
V

=
NC

24π2
Γ
(

0,
m2

Λ2

)
=
f2(0)
6m2

(2.35)

exemplifies the role of the derivative expansion: In momentum space it is a
Taylor series about q2 = 0. The substitution of the parameterization, (2.20)
into (2.32), suggests fπ = f(0) in the absence of (axial)vector mesons. This
differs from the exact result, (2.23) by O(m2

π/Λ2).
Let us now look a bit closer at the vector meson fields. As a consequence

of spontaneous chiral symmetry breaking the anti-commutator in (2.33) has
a piece that is purely proportional to the axial-vector field. Thus a term of
the form Aμ∂

μ
(
M −M †) emerges in the action, (2.32). Essentially this is

π–A1 mixing and requires a redefinition of the axial-vector field to account
for the physical particle content. Then the (axial)vector meson masses are
identified as

m2
V =

g2
V

4G2
and m2

A = m2
V + 6m2 . (2.36)
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The redefinition of the axial-vector field furthermore induces an additional
quadratic derivative term for the pion field from the local part of the action.
This requires a renormalization to identify the physical pion field. In total one
reads off the pion decay constant

f2
π =

f2(0)
1 + 4G1f2(0)

. (2.37)

In terms of the two flavors with M = m(1 + iπ · τ/fπ + . . .) and Vμ =
(gV /2)ρμ · τ the commutator in (2.33) generates the vertex

Lρππ = gV ρμ · (π × ∂μπ) (2.38)

that describes the ρ-meson decay into two pions and identifies gV as the as-
sociated coupling constant, gρππ = gV. Putting (2.35)–(2.38) together relates
observable quantities,

m2
V

m2
A

=
g2
ρππf

2
π

m2
A −m2

V

. (2.39)

As a consequence, the particular choice forG2 that ensures Weinberg’s relation
between vector and axial-vector massesmA =

√
2mV [35] also gives the KSRF

relation mV =
√

2gρππfπ for the ρ-meson decay [36, 37]. The interaction

Lagrangian, (2.38) results in the ρ-meson width Γ(ρ → ππ) =
g2ρππ

6πm2
ρ
|qπ|3,

where |qπ| ≈ 360 MeV is the pion momentum in the ρ-meson rest frame. The
empirical value Γ (ρ → ππ) ≈ 150 MeV [5] gives gρππ ≈ 6 vs. 5.85 from
KSRF.

The special case that only pseudoscalar fields are considered, i.e., M = mU
as in (2.20) has been thoroughly investigated in the context of the gradient
expansion. For U ∈ SU(Nf) the leading term must have at least two deriva-
tives. From (2.32) and (2.35) it is obvious that this term is the non-linear
σ-model,

Lnlσ = −f
2
π

4
tr (αμαμ) =

f2
π

4
tr
(
∂μU∂

μU †) , (2.40)

with αμ = U †∂μU . In the two-flavor case we consider the chiral field U =
exp (iτ · π/fπ) as the non-linear representation for the pion fields and expand,

Lnlσ =
1
2

(∂μπ) · (∂μπ) +
1

6f2
π

[
(π · ∂μπ)2 − π2 (∂μπ) · (∂μπ)

]
+ · · · , (2.41)

which determines the four pion coupling constant to be proportional to 1/f2
π.

From (2.22) we infer that this effective four pion coupling constant scales as
1/NC. The expansion, (2.41), is the principal starting point of chiral perturba-
tion theory [12, 13, 14, 15, 16]. Higher order derivative terms are also known
for the pseudoscalar case. The contribution with four derivatives acting on U
is [30, 38]
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L(4) =
NC

96π2
Γ
(

1,
m2

Λ2

)
tr
{
(αμαμ)

2 − (∂μαμ)
2
}

+
NC

192π2
Γ
(

2,
m2

Λ2

)
tr
{
αμανα

μαν − 2 (αμαμ)
2
}
. (2.42)

The coefficients are finite in the limit Λ → ∞,

lim
Λ→∞

L(4) =
NC

384π2
tr
{
[αμ, αν ]

2 − 4 (∂μαμ)
2 + 2 (αμαμ)

2
}
. (2.43)

The commutator term will later play a decisive role in the framework of the
Skyrme model.

So far we have only considered the modulus of the fermion determinant in
Euclidean space, (2.15). But also the phase is non-zero, even in the absence
of vector meson fields. It is related to the anomaly as it arises from the fact
that the fermion determinant is not invariant under (local) axial transforma-
tions. In leading order of the derivative expansion this phase results in the
Wess–Zumino–Witten action [39] when rotated back to Minkowski space. The
calculation is somewhat involved and we will only sketch it here.

Starting point is the parameterization

M = S + iP = ξ†L Σ ξR, (2.44)

and the observation is that the local chiral transformation

iD̃/ = T iD/T †, with T = ξL + ξR − (ξL − ξR) γ5 (2.45)

removes the pseudoscalar fields from the Dirac operator

iD̃/ = i(∂/+ Ṽ/+ Ã/ γ5) − Σ , (2.46)

in favor of the induced (axial) vector fields Ṽμ and Ãμ. The idea now is to
compute the fermion determinant for D̃ in the proper time scheme

AF =
1
2
Tr
∫ ∞

1/Λ2

ds
s

e−sD̃D̃ (2.47)

and perform the transformation inverse to (2.45) in order to incorporate the
chiral field U(x) = ξ†L(x)ξR(x). Under an infinitesimal local chiral transfor-
mation the (axial)vector fields vary as

δ
(
Ṽμ + iγ5Ãμ

)
= [D̃μ, δα(x)] + i[D̃μ, δβ(x)]γ5 , (2.48)

where δα = Ω†δΩ and δβ = ω†δω are Cartan matrix fields in flavor space
(i.e., Ω and ω are unitary). The regularized fermion determinant transforms
as

δAF = 2i Tr
[
e−D̃D̃/Λ

2
ω†δω γ5

]
. (2.49)
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This is actually nothing but Fujikawa’s formulation of the chiral anomaly [40].
The regularization has been chosen such that only axial transformations con-
tribute. This guarantees that the vector current is conserved. We consider
(2.49) as a differential equation in functional space that must be integrated
from ω(x) = 1 to ω(x) = U(x). This is a complicated calculation that involves
various aspects of differential geometry. Details are given in [41], see also [42].
Heat kernel methods [43] may be employed to verify that the right hand side
of (2.49) is finite as Λ → ∞. In the absence of vector mesons and in leading
order of the gradient expansion the calculation yields the Wess–Zumino term

ΓWZ = − iNC

240π2

∫

M5

d5x εμνρστ tr (αμαναρασατ ) . (2.50)

The integral is over a five-dimensional manifold whose boundary is Minkowski
space, ∂M5 = M4. This fifth dimension reflects the auxiliary variable which
is introduced to formally integrate the anomaly equation (2.49) in functional
space [44]: The additional variable τ ∈ R generalizes U(x) → Uτ (x) = [U(x)]τ .
Then also the induced (axial)vector fields Ṽμ and Ãμ that are contained in D̃
parametrically depend on τ . The Wess–Zumino term, (2.50) finally arises by
integrating the anomaly equation (2.49) from τ = 0 to τ = 1.

Obviously the Wess–Zumino term is non-local. In practice its contribution
to an observable in four-dimensional space is computed with the help of Stoke’s
theorem. Due to the anti-symmetric structure this term vanishes in the two-
flavor reduction. However, in the three-flavor version it describes processes
like kaon scattering into three pions. Also, when gauged with electromagnetic
fields, it properly describes the anomalous π0 decay into two photons [39],
see Appendix C where we repeat that calculation. In the discussion of the
soliton picture (Chap. 6) for baryons we will recognize that the Wess–Zumino
term has very decisive consequences for the quantization of the soliton: The
baryon number one soliton is forced to possess half-integer spin when NC is
odd.

2.5 PCAC

In (2.23) we have identified the residuum of the propagator for the pseu-
doscalar fields φa as the (square of the) pion decay constant, fπ. We have
then normalized the argument of the chiral field in the non-linear σ model
accordingly, cf. (2.40). Actually fπ is not a pure strong interaction quantity.
Hence that identification appears a bit premature and we will now argue in
its favor. The pion decay constant is measured from the pion decay into muon
and muon–neutrino. This is an electroweak process and the corresponding
(low-energy) interaction is prescribed as a current–current Lagrangian,

Lπ→μνμ = cA(hadr)
μ A(lept),μ (2.51)
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where the coupling constant, c, is found from the Weinberg–Salam model
for the electroweak interactions. Furthermore A(hadr)

μ and A(lept)
μ are the axial

current operators for the hadrons (i.e., π) and leptons (μ, νμ), respectively. For
simplicity the sum over flavor indices is not made explicit in (2.51). It is now
obvious that we have to compute the hadronic matrix element 〈0|Aμ|π(p)〉
to investigate the decay of a pion with momentum p. We have dropped the
superscript because it is unambiguous that we are concerned with hadronic
axial current from now on. Also, eventual vector interactions are not shown
in (2.51), because the analog pion matrix element vanishes by parity.

The pion decay constant is simply defined as the pion matrix of the axial
current

〈0|Aaμ(x)|πb(q)〉 = ifπδab qμ e−iqx . (2.52)

In principle, Lorentz covariance allows fπ to depend on q2, but the pion is
on-shell so q2 = m2

π is fixed. Of course, it is possible to compute this ma-
trix element in the above-discussed model for the quark flavor dynamics. As
sketched at the end of Appendix B this indeed yields (2.23). It is more illu-
minating to consider this matrix element in the local effective meson theory.
In this model the axial current is obtained as the Noether current for the chi-
ral transformation L = R† in (2.30). The resulting infinitesimal variation of
the chiral field is proportional to the anti-commutator {U, τ}. To compute the
matrix element, (2.52) we only need the part of the axial current that is linear
in the pion field. From the non-linear σ model, (2.40) it is straightforwardly
found to be

A(nlσ)
μ (x) = i

f2
π

2
tr
[τ
2
(
αμ + UαμU

†)
]

= −fπ∂μπ(x) + O
(
π2
)
. (2.53)

This shows that the previous identification of the pion decay constant is indeed
equivalent to its actual definition, (2.52).

We may differentiate (2.52) to find

〈0|∂μAaμ(x)|πb(q)〉 = fπm
2
πδab e−iqx . (2.54)

This clearly demonstrates the role of the pion as a would-be Goldstone bo-
son: if the axial current were conserved, the pion would indeed be mass-
less. We reexpress the right hand side of (2.54) as the matrix element
fπm

2
π〈0|π̂a(x)|πb(q)〉 where π̂a(x) is the pion field operator. The resulting

generalization of (2.54) into an operator identity

∂μAμ(x) = fπm
2
ππ̂(x) (2.55)

is called the partially conserved axial vector current (PCAC) hypothesis.
PCAC relates a current whose matrix elements are measured in the weak in-
teraction to an operator in strong interactions and one is tempted to assume
that numerous predictions follow from it. However, in practice more assump-
tions must often be made to arrive at definite results. Direct relations from
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PCAC concern matrix elements at zero momentum transfer and smoothness
of the form factors must be taken for granted to extrapolate to the physically
relevant regime.

In soliton physics PCAC is sometimes interpreted in the opposite way.
While the axial current can be computed as Noether current, the identification
of the interpolating pion field operator is not as straightforward because in
these models the asymptotic pion field is a superposition of a classical field
and fluctuations about it. Then (2.55) is unprejudicedly utilized as a definition
of the pion field operator in terms of Aμ. As stated PCAC is a hypothesis,
and we will discuss an example in Chap. 9 where that definition (or at least
its generalization to the three-flavor case) appears to be inconsistent.

2.6 Relation to Instanton Effects

Often instanton effects are utilized to motivate or even to form the basis for
a derivation of the model Lagrangian, (2.8), cf. [45, 46]. This certainly is
an overemphasis of such effects. However, instanton effects can be argued to
induce dynamical chiral symmetry breaking in a way similar to the quartic
quark interaction in (2.8).

To illuminate that point let us briefly recall the nature of instantons and
their relevance to QCD. Instantons are localized field configurations that min-
imize the Euclidean Yang–Mills action

SE[A] =
1

2g2

∫
d4xE tr (FμνFμν) (2.56)

where Fμν = ∂μAν − ∂νAμ + i [Aμ, Aν ] is the field strength tensor. The gauge
field, Aμ itself is matrix valued in color space. In the standard realization
instantons are embedded in the SU(2) subgroup whose generators are pro-
portional to the Pauli matrices τ ,

A(inst)
μ =

x2

x2 + ρ2
V (x) ∂μV †(x) with V (x) =

1
ρ

(x4 + iτ · x) . (2.57)

Here x4 is the Euclidean time, x2 = x2
4 + x2 and ρ is a constant scale pa-

rameter that measures the extension (size) of the instanton. Rescaling imme-
diately shows that the action, (2.56) does not depend on ρ. Anti-instanton
configurations are simply constructed by substituting V (x) → V †(x). Vac-
uum configurations are characterized by Fμν ≡ 0 for which it suffices that
A

(vac)
μ = W (x)∂μW †(x) is pure gauge. Any of these vacuum configurations is

characterized by a topological charge n. The instanton configuration, (2.57)
mediates between vacua with charges n at x4 = −∞ and n + 1 at x4 = ∞.
Even more, the semiclassical analysis reveals that the transition amplitude
between such two vacua is exactly e−SE[A(inst)] = e−8π2/g2 [1].
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In the next step fermions are coupled to the instanton. Consider the eigen-
values, λn of the Dirac operator with the instanton background and label their
spectral density by ν(λn). Then the fermion determinant in the instanton
background can formally4 be written as (in Euclidean space)

log Det
(
i∂/+A/(inst) + im

)
=

1
2

∫ ∞

−∞
dλ ν(λ) log

(
λ2 +m2

)
. (2.58)

As in (B.15) the quark condensate 〈q̄(x)q(x)〉 is obtained from the derivative of
the left hand side with respect to the quark mass, m. Utilizing the δ-function
representation δ(x) = limε→0+ πε/(x2 + ε2) yields the famous Casher–Banks
relation [47]

〈q̄(x)q(x)〉 �
m→ 0

− πν(0) (2.59)

that relates the quark condensate in the chiral limit to the zero-mode density.
The crucial observation is that, as a result of the Atiah–Singer index theorem,
an instanton background generates a zero-mode fermion that is right-handed
in the limit m → 0. Choosing as above to embed the instanton in the SU(2)
color subgroup, the zero-mode spinor reads

qI(x) =
ρ

π
√

2x2 (x2 + ρ2)3/2
γ · xΩ . (2.60)

In the chiral representation of the Dirac matrices Ω is a 4× 2 matrix with the
upper 2 × 2 block being zero and the lower one equal to iτ2. The right index
of Ω denotes color and eventually couples to the instanton, (2.57). An anti-
instanton also generates a zero-mode fermion as in (2.60), however, the 2 × 2
blocks in Ω exchanged. Thus the zero-mode of an anti-instanton is left-handed.

To set up a model (sometimes called the instanton liquid model [48]),
assume that the vacuum is filled by an ensemble of (well-separated) instantons
and anti-instantons. Such an ensemble produces ν(0) �= 0 and thus a non-zero
quark condensate. It is beyond the scope of this monograph to repeat the
actual model calculations,5 however, the lesson to be learned is that instanton
effects in QCD indeed may cause chiral symmetry to be spontaneously broken.

When the fermion propagator S in the single instanton background

S(x, y) ≈ S0(x, y) +
qI(x)q

†
I (y)

−im
(2.61)

is approximated by the sum of the free propagator S0 and the zero-mode com-
ponent, an action functional that reproduces this fermion propagator can be
constructed. This functional contains a non-local interaction of the fermion
fields with the spinor of the zero-mode. Essentially 2Nf fermions couple to
the single instanton. In the instanton liquid model the above approximation
4 Note that we treat ultraviolet divergent objects as if they were finite.
5 See, e.g., the review articles [46, 48, 49, 50] and references therein.
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scheme is generalized to multi-instanton and anti-instanton configurations in
the first step. Subsequently their positions and orientations are integrated
over. This induces quark correlations and at the same time defines an effec-
tive model for the quark flavor dynamics. For Nf = 2 and in leading order
1/NC the flavor structure of this effective model relates to the G1 term in
(2.8) [46]. Even though instantons couple only to right-handed fermions and
anti-instantons only to left-handed ones, it is not surprising that a chiral
invariant quark interaction emerges because instanton and anti-instanton en-
sembles are independently averaged and in this process neither is favored over
the other. Since the (anti)instantons interact with 2Nf fermions, it is more or
less obvious that the spin flavor structure of (2.8) results. However, there is one
small piece of information that can be gained from the instanton model: Since
in that model the interaction is mediated by (the Fourier transformation of)
the instanton, the inverse of the average instanton size (ρ̄) provides a natural
energy cut-off for this four-fermion interaction. Early studies of phenomeno-
logical applications of the instanton liquid model yielded ρ̄ ≈ 1

3 fm [51, 52] for
this a priori free parameter. This result was reproduced within a variational
approach to stabilize the (anti)instanton ensemble [53] utilizing the classical
instanton anti-instanton interaction. This leads to an energy cut-off in the or-
der of 600 MeV, a value consistent with the NJL model estimate in Sect. 2.3.
Rather than from QCD, the instanton liquid estimate of the energy cut-off
arises from fits to empirical data. Hence the agreement with NJL model result
is not surprising.

Nevertheless there are some conceptual differences between the NJL model
action and those instanton-induced interactions. We will briefly consider them
for the case Nf = 2. We merely display the result and in doing so it is useful
to introduce non-local fermion fields [54]

ψ(x) =
∫

d4x

∫
d4k

(2π)4
eik(x−y)r(k) q(y) , (2.62)

where r(k) is extracted from the Fourier transformation of the fermion zero-
mode in the instanton background. The non-local transformation, (2.62) sup-
presses the high-frequency modes and thereby introduces the above-mentioned
cut-off. In these non-local fields the instanton-induced (effective) potential
seems actually local [46, 50],

Vinst.ind. = −g2
I

[(
ψ̄ψ
)2 +

(
ψ̄iγ5τψ

)2 −
(
ψ̄τψ

)2 −
(
ψ̄iγ5ψ

)2]
, (2.63)

where the interaction strength, g2
I , is proportional to the inverse (anti)instan-

ton density in the liquid. While Vinst.ind. is invariant under SUL(2) × SUR(2)
chiral transformations, it varies under UA(1). In the NJL model interaction,
(2.8) this is still a (classical) symmetry and all spin-flavor structures in the G1

term are attractive (as suggested by the gluon exchange approach [20]), while
in (2.63)

(
ψ̄τψ

)
and

(
ψ̄iγ5ψ

)
are repulsive. Thus the instanton liquid model
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would in particular suggest that isovector partners of the scalar isoscalar me-
son were not bound. This seems at variance with recent empirical studies that
suggest the existence of even a nonet of scalar mesons [55].

There is some evidence from lattice measurements for the existence of an
(anti)instanton ensemble in the vacuum [56, 57, 58]. An arbitrary gluon con-
figuration on the lattice is dominated by the quantum noise of high-frequency
modes. They can be eliminated in a smoothing procedure, so-called cooling,
which leaves over isolated structures that may indeed be interpreted as an
(anti)instanton ensemble. From the cooled configuration average instanton
sizes of the order of 0.3 fm are estimated in agreement (and partial support)
with the above-mentioned studies. However, it should be mentioned that the
cooling procedure is not really converging because after many arbitrary itera-
tions the instantons and anti-instantons will annihilate each other more or less
completely. For example, the results displayed in Table 1 of [57] suggest that
the number of instantons does not saturate as the number of cooling steps
increases. Stated otherwise, the extracted (anti)instanton properties depend
on the number of conducted cooling steps. As a way out, it has been proposed
to extrapolate this functional behavior to zero cooling steps. This procedure
does not seem very conclusive as Table 1 in [58] indicates.

2.7 Final Note on Chiral Quark Models

As a brief summary on this chapter about the quark flavor dynamics it seems
fair to say that there many ways to motivate an NJL-type interaction as in
(2.8), even from QCD. Most of the considerations contain approximations
whose validity is difficult to judge. Probably any bona fide argumentation
that respects chiral symmetry and stops one step before completely omitting
any interaction will result in such a model. Above we have argued that the
current–current approximation and the instanton liquid model do so, the field
strength (re)formulation [59] of QCD is yet another example.

The NJL-type models focus on chiral symmetry and a dynamical descrip-
tion of its spontaneous breaking. However, these models lack the important
feature of color confinement. This should not be forgotten even though it is
not a serious drawback for most applications because they are not affected by
unphysical quark anti-quark thresholds. This is particularly the case for static
solitons that we will exhaustively discuss in the following chapter.

References

1. T. P. Cheng and L. F. Li, Gauge Theory of Elementary Particles, Chapters 5
and 16. Clarendon Press, Oxford, 1988.

2. S. L. Adler, Phys. Rev. 177 (1969) 2426.
3. J. S. Bell and R. Jackiw, Nuovo Cim. A60 (1969) 47.



References 25

4. K. Fujikawa, Phys. Rev. D21 (1980) 2848.
5. S. Eidelman et al. [PDG], Phys. Lett. B592 (2004) 1.
6. A. H. Fariborz, ed., Scalar Mesons: An Interesting Puzzle for QCD. Proceed-

ings, Workshop, Utica, USA, May 16–18, 2003. American Institute of Physics,
New York, 2003.

7. G. ’t Hooft, Phys. Rev. Lett. 37 (1976) 8.
8. H. Reinhardt and R. Alkofer, Phys. Lett. B207 (1988) 482.
9. R. Alkofer, M. A. Nowak, J. J. M. Verbaarschot, and I. Zahed, Phys. Lett.

B233 (1989) 205.
10. Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122 (1961) 345.
11. Y. Nambu and G. Jona-Lasinio, Phys. Rev. 124 (1961) 264.
12. S. Weinberg, Physica A96 (1979) 327.
13. J. Gasser and H. Leutwyler, Phys. Rep. 87 (1982) 77.
14. J. Gasser and H. Leutwyler, Ann. Phys. 158 (1984) 142.
15. V. Bernard, N. Kaiser, and U. G. Meißner, Int. J. Mod. Phys. E4 (1995) 193.
16. V. Bernard and U. G. Meißner, hep-ph/0611231.
17. U. Vogl and W. Weise, Prog. Part. Nucl. Phys. 27 (1991) 195.
18. S. P. Klevansky, Rev. Mod. Phys. 64 (1992) 649.
19. D. Ebert, H. Reinhardt, and M. K. Volkov, Prog. Part. Nucl. Phys. 33 (1994) 1.
20. R. Alkofer and H. Reinhardt, Chiral Quark Dynamics, Chap. 2.3. Springer–

Lecture notes in physcis, 1995.
21. P. Kopietz, Bosonization of Interacting Fermions in Arbitrary Dimensions,

vol. M48. Lect. Notes Phys., 1997.
22. J. S. Schwinger, Phys. Rev. 82 (1951) 664.
23. F. Doering, C. Schueren, T. Watabe, K. Goeke, and E. Ruiz Arriola, Nucl.

Phys. A603 (1996) 415.
24. H. Weigel, E. Ruiz Arriola, and L. P. Gamberg, Nucl. Phys. B560 1999) 383.
25. T. Meissner, E. Ruiz Arriola, and K. Goeke, Z. Phys. A336 (1990) 91.
26. A. H. Blin, B. Hiller, and M. Schaden, Z. Phys. A331 (1988) 75.
27. R. Alkofer and H. Reinhardt, hep-ph/921223.
28. R. Alkofer, H. Reinhardt, and H. Weigel, Phys. Rep. 265 (1996) 139.
29. H. Weigel, R. Alkofer, and H. Reinhardt, Nucl. Phys. A576 (1994) 477.
30. D. Ebert and H. Reinhardt, Nucl. Phys. B271 (1986) 188.
31. S. Klimt, M. Lutz, U. Vogl, and W. Weise, Nucl. Phys. A516 (1990) 429.
32. R. D. Ball, Phys. Rep. 182 (1989) 1.
33. I. J. R. Aitchison and C. M. Fraser, Phys. Lett. B146 (1984) 63.
34. I. J. R. Aitchison and C. M. Fraser, Phys. Rev. D31 (1985) 2605.
35. S. Weinberg, Phys. Rev. Lett. 18 (1967) 507.
36. K. Kawarabayashi and M. Suzuki, Phys. Rev. Lett. 16 (1966) 255.
37. Riazuddin and Fayyazuddin, Phys. Rev. 147 (1966) 1071.
38. M. Prasza�lowicz, Acta Phys. Polon. B22 (1991) 525.
39. E. Witten, Nucl. Phys. B223 (1983) 422, 433.
40. K. Fujikawa, Phys. Rev. D21 (1980) 2848.
41. J. L. Petersen, Acta Phys. Polon. B16 (1985) 271.
42. M. Wakamatsu, Phys. Rev. D54 (1996) 6459.
43. I. G. Avramidi, Heat Kernel and Quantum Gravity, vol. M64. Lect. Notes

Phys., 2000.
44. J. F. Donoghue, E. Golowich, and B. R. Holstein, Dynamics of the Standard

Model, Chapter 7. Cambridge Monographs on Particle Physics, 1996.



26 2 Quark Flavor Interaction

45. D. Diakonov and V. Y. Petrov, Nucl. Phys. B272 (1986) 457.
46. D. Diakonov, Prog. Part. Nucl. Phys. 51 (2003) 173.
47. T. Banks and A. Casher, Nucl. Phys. B169 (1980) 103.
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