Contents

	List of authors	V111
	Acknowledgments	х
	Introduction (SEGEL)	1
	Mathematical applications	9
	Conventions	11
1	Biochemical reaction theory	13
	1.1 Fundamental concepts (RUBINOW and SEGEL)	13
	1.2 Equilibrium binding of macromolecules with	
	ligands (RUBINOW)	19
	1.3 Allosteric and induced-fit theories of protein	
	binding (RUBINOW)	30
	1.4 Positive and negative cooperativity (RUBINOW	
	and SEGEL)	39
	1.5 Graphical representations for tetramer binding	
	(GHOZLAN, RUBINOW and SEGEL)	55
	1.6 Enzyme induction (YAGIL)	68
	1.7 Molecular models for receptor to adenylate	
	cyclase coupling (TOLKOVSKY and	
	LEVITZKI)	84
2	Simplification of biochemical reaction systems	
	(ZEIGLER)	112
	2.1 Introduction	112
	2.2 Essentials of lumping and homomorphism	116
	2.3 Representation and simulation of chemical networks	121
	2.4 Lumping of reactions	125
	2.5 Lumping chemicals into pools	128
	2.6 Lumping of reactions and of chemicals	131
	2.7 Assessment of error	137

vi	Contents	
	2.8 The simplification procedure and its application	139
	to the E. coli cell	143
	2.9 Conclusions	
•	Biological applications of control theory (RAPP)	146
3	2.1 Matabolic regulation as a control system	146
	3.2 Analysis of a linear, open loop control system	156
	3.3 Feedback in linear pathways	167
	3.4 Time delay and control loop stability	181
	3.5 The effect of different controllers	185
	2.6 Nonlinear models	186
	3.7 A negative feedback biochemical system: The	100
	Goodwin equations for $N=3$	189
	3.8 Positive feedback in three dimensions	204
	3.9 Catastrophe theory	222 235
	3.10 Conclusions	233
	N I I to also	248
4	Case studies in kinetics 4.1 Models for oscillations and excitability in	
	biochemical systems (GOLDBETER)	248
	4.2 Linear versus saturated rates in synaptic release	
	(DADNAS)	292
	4.2 Ontimal strategies for the metabolism of storage	
	materials in unicellular and multicellular	
	organisms (PARNAS)	317
	4.4 Acceptable and unacceptable models of liver	
	regeneration in the rat (BARD)	336
	4.5 Chaos (PERELSON)	349
	(DEDELSON)	365
5	Mathematical immunology (PERELSON)	365
	5.1 An introduction to the immune system	372
	5.2 A mathematical look at clonal selection 5.2 A mathematical look at clonal selection with cells	376
	5.3 Models for the interaction of antigen with cells	404
	5.4 Application of control theory to immunology	423
	5.5 Theory of immunoassays	
6	Some applications of partial differential equations in	440
v	hiology	440
	6.1 The general balance law and the diffusion	440
	equation (SEGEL)	453
	6.2 Transit times (HARDT)	458
	6.3 Facilitated diffusion (RUBINOW)	450

Contents	vi
6.4 Morphogenetic patterns and reaction-diffusion equations (SEGEL)	470
6.5 Analysis of population chemotaxis (SEGEL)	486
6.6 Cell kinetics (RUBINOW)	502
6.7 Biological waves (ODELL)	52 3
Visual fixation and tracking in flies (WEHRHAHN)	568
7.1 Introduction	568
7.2 The phenomenological theory	577
7.3 Linear theory	587
7.4 Some aspects of the nonlinear theory	594
7.5 Discussion	599
7.6 Appendix	602
Appendix: Mathematical topics	606
A.1 A calculus refresher (SEGEL)	606
A.2 Miscellaneous algebraic topics (RAPP)	640
A.3 Qualitative theory of systems of ordinary	
differential equations, including phase plane	
analysis and the use of the Hopf bifurcation	
theorem (ODELL)	649
A.4 Dimensional analysis (SEGEL)	728
A.5 A brief introduction to the numerical solution of	
ordinary differential equations (LIRON)	733
Author index	742
Subject index	749