Contents

1	Infi	nite-dimensional Linear Programs	1
	1.1	Introduction	1
	1.2	Some infinite linear programs	2 2 3
		1.2.1 The bottleneck problem	2
		1.2.2 Continuous-time network flow	
		1.2.3 Cutting and filling	5
		1.2.4 Approximation	7
		1.2.5 Games	7
	1.3	Elements of the simplex method	9
		1.3.1 Duality	9
		1.3.2 Basic solutions and pivoting	12
	Pro	blems	15
2	Algo	ebraic Fundamentals	16
_	2.1	Introduction	16
	2.2	Linear programs and their algebraic duals	16
		2.2.1 The linear program	17
		2.2.2 The algebraic dual problem	18
	2.3	Basic solutions	19
		2.3.1 Degeneracy	21
		2.3.2 Minimal support	21
		2.3.3 Existence of a basic optimal solution	23
	2.4	Reduced costs	24
		The pivot step	26
	2.6	· · · · · · · · · · · · · · · · · · ·	28
	2.7	Notes	31
		blems	32
3	Tor	oology and Duality	35
-		Introduction	35
		Dual pairs of topological vector spaces	36
		The linear programming problem	38
	5.5	3.3.1 Elementary duality theory	38

Contents

	3.4	Subconsistency and subvalues	40
		3.4.1 An example of Gale	42
		3.4.2 An example of Kretschmer	43
	3.5	Classification schemes	45
		3.5.1 An example of Ben-Israel, Charnes and Kortanek	47
		3.5.2 Homogenous constraints	48
	3.6	Conditions for the absence of a duality gap	51
		3.6.1 Closedness conditions	52
		3.6.2 Interior point conditions	54
		3.6.3 Boundedness conditions	56
		3.6.4 Compactness conditions	57
	3.7	The existence of optimal solutions	59
	3.8	Notes	61
	Pro	blems	63
ļ	Sen	ni-infinite Linear Programs	65
	4.1	Introduction	65
	4.2	The countable semi-infinite program and its dual	65
		4.2.1 An example of Karney	69
	4.3	Simplex extensions for countable semi-infinite programs	70
		4.3.1 An algorithm for the dual problem	70
		4.3.2 An algorithm for the primal problem	72
	4.4	The continuous semi-infinite program and its dual	73
	4.5	Simplex extensions for continuous semi-infinite programs	77
		4.5.1 An algorithm for the dual problem	77
		4.5.2 An algorithm for the primal problem	78
		4.5.3 An example to illustrate the primal and dual algorithms	83
	4.6	The uniform approximation problem	84
	4.7	Notes	88
	Pro	bblems	89
_	TEL.	e Mass-transfer Problem	91
5			91 91
		Introduction The continuous transportation much law	91
	5.2	* <u>*</u>	92
		5.2.1 The dual problem	
	£ 2	5.2.2 Solvability and duality	93 05
	5.3	1	95 99
	5.4	· · ·	
		5.4.1 Convergence of the algorithm	103
	5.5		106
	5.6		109
	Pro	oblems	110

Ì

Contents			
6	Maximal Flow in a Dynamic Network		
	6.1 Introduction	111	
	6.2 The time-continuous network-flow problem	112	
	6.3 Generalized cuts	115	
	6.4 Reachable nodes	117	
	6.5 Duality theory	123	
	6.6 Notes	128	
	Problems	128	
7	Continuous Linear Programs	130	
•	7.1 Introduction	130	
	7.2 The continuous linear program and its dual	130	
	7.3 Separated continuous linear programs (SCLP)	135	
	7.4 The basic solutions for SCLP	136	
	7.5 A class of SCLPs with piecewise linear solutions	139	

7.6 Duality theory

8.1 Introduction

8 Other Infinite Linear Programs

8.2 The capacity problem

8.3 The continuous network program

8.5 Optimal design of structures

8.4 The space-continuous maximum-flow problem

8.2.1 Notes

8.3.1 Notes

8.4.1 Notes

8.5.1 Notes

Index of Problem Statements

Subject Index

7.7 Notes

Problems

142

144

145

146

146

147

150

150

152

152 156

156

159

168

169