| 1 | HILL | oduction and premimaries | 1 | |-----|------|--|----| | | 1.1 | Introduction, 1 | | | | 1.2 | General preliminaries, 3 | | | | | Preliminaries from linear algebra, matrix theory, and Euclidean geometry, 4 | ļ. | | | 1.4 | Some graph theory, 8 | | | 2 | Prol | blems, algorithms, and complexity | 14 | | | 2.1 | Letters, words, and sizes, 15 | | | | | Problems, 15 | | | | | Algorithms and running time, 16 | | | | | Polynomial algorithms, 17 | | | | | The classes \mathscr{P} , $\mathscr{N}\mathscr{P}$, and $\operatorname{co-}\mathscr{N}\mathscr{P}$, 18 $\mathscr{N}\mathscr{P}$ -complete problems, 20 | | | | 2.0 | Some historical notes, 21 | | | | | Some instances, 21 | | | D A | рт | I: LINEAR ALGEBRA | 25 | | FA | .K.I | E LINEAR ALGEBRA | 25 | | 3 | Line | ear algebra and complexity | 27 | | | | Some theory, 27 | | | | | Sizes and good characterizations, 29 | | | | | The Gaussian elimination method, 31 | | | | 3.4 | Iterative methods, 36 | | | | Not | es on linear algebra | 38 | | | | Historical notes, 38 | | | | | Further notes on linear algebra, 40 | | | D.A | DТ | II: LATTICES AND LINEAR DIOPHANTINE | | | | | | 40 | | EQ | UA | TIONS | 43 | | 4 | The | ory of lattices and linear diophantine equations | 45 | | | 4.1 | The Hermite normal form, 45 | | | | 4.2 | 4.5 | | | | | Unimodular matrices, 48 | | | | 4.4 | Further remarks, 50 | | | | | | | | viii | | | |------|--|--| | 5 | Algorithms for linear diophantine equations | 52 | |------|--|-----| | | 5.1 The Euclidean algorithm, 52 5.2 Sizes and good characterizations, 54 5.3 Polynomial algorithms for Hermite normal forms and systems of linear diophantine equations, 56 | | | 6 | Diophantine approximation and basis reduction | 60 | | | 6.1 The continued fraction method, 60 6.2 Basis reduction in lattices, 67 6.3 Applications of the basis reduction method, 71 | | | | Notes on lattices and linear diophantine equations | 76 | | | Historical notes, 76 Further notes on lattices and linear diophantine equations, 82 | | | | ART III: POLYHEDRA, LINEAR INEQUALITIES, ND LINEAR PROGRAMMING | 83 | | ALL' | ND LINEAR PROGRAMMING | 63 | | 7 | Fundamental concepts and results on polyhedra, linear inequalities, and linear programming | 85 | | | 7.1 The Fundamental theorem of linear inequalities, 85 7.2 Cones, polyhedra, and polytopes, 87 7.3 Farkas' lemma and variants, 89 7.4 Linear programming, 90 7.5 LP-duality geometrically, 92 7.6 Affine form of Farkas' lemma, 93 7.7 Carathéodory's theorem, 94 7.8 Strict inequalities, 94 7.9 Complementary slackness, 95 7.10 Application: max-flow min-cut, 96 | | | 8 | The structure of polyhedra | 99 | | | 8.1 Implicit equalities and redundant constraints, 99 8.2 Characteristic cone, lineality space, affine hull, dimension, 100 8.3 Faces, 101 8.4 Facets, 101 8.5 Minimal faces and vertices, 104 8.6 The face-lattice, 104 8.7 Edges and extremal rays, 105 8.8 Extremal rays of cones, 105 8.9 Decomposition of polyhedra, 106 8.10 Application: doubly stochastic matrices, 107 8.11 Application: the matching polytope, 109 | | | 9 | Polarity, and blocking and anti-blocking polyhedra | 112 | | | 9.1 Polarity, 112 9.2 Blocking polyhedra, 113 9.3 Anti-blocking polyhedra, 116 | | | 10 | Sizes and the theoretical complexity of linear inequalities and linear programming | | | |----|---|-------------|--| | | 10.1 Sizes and good characterizations, 120 10.2 Vertex and facet complexity, 121 10.3 Polynomial equivalence of linear inequalities and linear programming, 124 10.4 Sensitivity analysis, 125 | | | | 11 | The simplex method | 129 | | | | 11.1 The simplex method, 129 11.2 The simplex method in tableau form, 132 11.3 Pivot selection, cycling, and complexity, 137 11.4 The worst-case behaviour of the simplex method, 139 11.5 The average running time of the simplex method, 142 11.6 The revised simplex method, 147 11.7 The dual simplex method, 148 | | | | 12 | Primal-dual, elimination, and relaxation methods | 151 | | | | 12.1 The primal-dual method, 151 12.2 The Fourier-Motzkin elimination method, 155 12.3 The relaxation method, 157 | | | | 13 | Khachiyan's method for linear programming | 163 | | | | 13.1 Ellipsoids, 163 13.2 Khachiyan's method: outline, 165 13.3 Two approximation lemmas, 166 13.4 Khachiyan's method more precisely, 168 13.5 The practical complexity of Khachiyan's method, 170 13.6 Further remarks, 171 | | | | 14 | The ellipsoid method for polyhedra more generally | 172 | | | | 14.1 Finding a solution with a separation algorithm, 172 14.2 Equivalence of separation and optimization, 177 14.3 Further implications, 183 | | | | 15 | Further polynomiality results in linear programming | 190 | | | | 15.1 Karmarkar's polynomial-time algorithm for linear programming, 190 15.2 Strongly polynomial algorithms, 194 15.3 Megiddo's linear-time LP-algorithm in fixed dimension, 199 15.4 Shallow cuts and rounding of polytopes, 205 | | | | | Notes on polyhedra, linear inequalities, and linear | 3 04 | | | | programming Historical notes, 209 | 209 | | | | Further notes on polyhedra, linear inequalities, and linear programming, 223 | | | | ^
PA | RT IV: INTEGER LINEAR PROGRAMMING | 227 | |---------|--|-----| | 16 | Introduction to integer linear programming | 229 | | | 16.1 Introduction, 229 16.2 The integer hull of a polyhedron, 230 16.3 Integral polyhedra, 231 16.4 Hilbert bases, 232 16.5 A theorem of Bell and Scarf, 234 16.6 The knapsack problem and aggregation, 235 16.7 Mixed integer linear programming, 236 | | | 17 | Estimates in integer linear programming | 237 | | | 17.1 Sizes of solutions, 237 17.2 Distances of optimum solutions, 239 17.3 Finite test sets for integer linear programming, 242 17.4 The facets of P₁, 243 | | | 18 | The complexity of integer linear programming | 245 | | | 18.1 ILP is NO-complete, 245 18.2 NO-completeness of related problems, 248 18.3 Complexity of facets, vertices, and adjacency on the integer hull, 251 18.4 Lenstra's algorithm for integer linear programming, 256 18.5 Dynamic programming applied to the knapsack problem, 261 18.6 Dynamic programming applied to integer linear programming, 264 | | | 19 | Totally unimodular matrices: fundamental properties and examples | 266 | | | 19.1 Total unimodularity and optimization, 266 19.2 More characterizations of total unimodularity, 269 19.3 The basic examples: network matrices, 272 19.4 Decomposition of totally unimodular matrices, 279 | | | 20 | Recognizing total unimodularity | 282 | | | 20.1 Recognizing network matrices, 282 20.2 Decomposition test, 287 20.3 Total unimodularity test, 290 | | | 21 | Further theory related to total unimodularity | 294 | | | 21.1 Regular matroids and signing of {0,1}-matrices, 294 21.2 Chain groups, 297 21.3 An upper bound of Heller, 299 21.4 Unimodular matrices more generally, 301 21.5 Balanced matrices, 303 | | | 22 | Integral polyhedra and total dual integrality | 309 | | | 22.1 Integral polyhedra and total dual integrality, 310 22.2 Two combinatorial applications, 312 22.3 Hilbert bases and minimal TDI-systems, 315 22.4 Box-total dual integrality, 317 22.5 Behaviour of total dual integrality under operations, 321 | | Contents xi | | 22.6
22.7
22.8
22.9
22.10 | Another characterization of total dual integrality, 327
Optimization over integral polyhedra and TDI-systems algorithmically, 330 | | | |----|--|---|-------------------|--| | 23 | Cutt | ting planes | 339 | | | | 23.1
23.2
23.3
23.4
23.5
23.6
23.7
23.8 | Finding the integer hull with cutting planes, 339 Cutting plane proofs, 343 The number of cutting planes and the length of cutting plane proofs, 344 The Chvátal rank, 347 Two combinatorial illustrations, 348 Cutting planes and NP-theory, 351 Chvátal functions and duality, 353 Gomory's cutting plane method, 354 | | | | 24 | Furt | ther methods in integer linear progamming | 360 | | | | 24.1
24.2
24.3
24.4
24.5
24.6 | Branch-and-bound methods for integer linear progamming, 360 The group problem and corner polyhedra, 363 Lagrangean relaxation, 367 Application: the traveling salesman problem, 370 Benders' decomposition, 371 Some notes on integer linear programming in practice, | | | | | Hist | orical and further notes on integer linear programming | 375 | | | | | Historical notes, 375 Further notes on integer linear programming, 378 | | | | | Nota | rences
ation index | 381
452
454 | | | | 1 | | | | | | ~u.J | VV AMWYIN | 465 | |