CONTENTS

CHAPTER I - DIFFERENTIAL CALCULUS IN NORMED LINEAR SPACES						
1,	Gateaux derivatives	•••	1			
2.	Taylor's formula	•••	7			
3.	Convexity and Gateaux different	tiability	11			
4.	Gateaux differentiability and weak lower semi-continuity					
5.	Commutation of derivations	•••				
6.	Frechet derivatives	•••	6			
7.	Model problem		19			
CHAPTER II - MINIMIZATION OF FUNCTIONALS-THEORY						
1,	Minimization without convexity	conditions ,	21			
2.	Minimization with convexity con	nditions	25			
3,	Applications to the model probl variational inequality	em and reduction to	30			
4.	Some functional spaces	•••	33			
5.	Examples		36			
CHAPTER III - MINIMIZATION WITHOUT CONSTRAINTS -						
	ALGORITHMS	•••	49			
1.	Method of descent:(1.1) Gener	alities	51			
		ergent choices of the ion of descent \mathbf{w}_{k}	54			
	(1.3) Conve	ergent choices of $ ho_k$	59			
	(1.4) Conve	ergence of algorithms	69			
2.	Generalized Newton's method	•••	73			

87

3. Other methods

CHAPTER IV - MINIMIZATION WITH CONSTRAINTS- ALGORITHMS	88
1. Linearization method	88
2. Centre method	105
3. Method of gradient with projection	109
4. Minimization in a product space	113
(4.1) Statement of the problem	113
(4.2) Minimization with constraints of convex functionals on products of reflexive Banach spaces	116
(4.3) Main result-convergence of the algorithm and Gauss-Seidel method	118
(4.4) Some applications-differentiable and non- differentiable functionals in finite dimensions	124
(4.5) Minimization of quadratic functionals on Hilbert spaces - Relaxation method by blocks	126
(4.6) Algorithm (of relaxation method)-Details	128
(4.7) Convergence of the algorithm	130
(4.8) Some examples of relaxation method in finite dimensional spaces	139
(4.9) Examples in infinite dimensional Hilbert spaces- optimization with constraints in Sobolev spaces	142
CHAPTER V - DUALITY AND ITS APPLICATIONS	144
 Preliminaries - Recollection of Hahn-Banach and Ky Fan and Sion theorem, Lagrangian and Lagrange multipliers, Primal and dual problems 	145
 Duality in finite dimensional spaces via Hahn-Banach theorem 	155
Qualifying hypothesis	159
Some examples of qualifying hypothesis	160

	(3, 1) Duality in the case of a quadratic form	• • •	163
	(3.2) Dual problem	•••	170
	(3.3) Method of Uzawa	•••	173
4.	Minimization of non-differentiable functionals us duality - examples and algorithm	sing 	183
VI - EL	EMENTS OF THEORY OF OPTIMAL CONTROL A	AND	194
1,	Optimal control theory	•••	194
	(1.1) Formulation of the problem of optimal con	trol	196
	(1,2) Duality and existence	•••	198
	(1.3) Elimination of state		207
	(1.4) Approximation	• • •	211
2,	Theory of optimal design		215
	(2.1) Formulation of the problem of optimal des	sign	217
	(2, 2) A simple example		221
	(2.3) Computation of the derivative of the cost function		222
	(2.4) Hypothesis and results		226
	OD A DILY		233

Duality in infinite dimensional spaces via Ky Fan and

162

3,

BIBLIOGRAPHY

Sion theorem