CONTENTS

				Page
Conventions	and	Symbols		XIII
Chapter 1	NON	LINEARL	Y CONSTRAINED OPTIMISATION	
·		TECHNIQUES BASED ON PROJECTIONS		
	1.1	Intro	duction	1
		1.1.1	Fundamental Concepts and	
			Results	3
		1.1.2	Projection Methods for	
			Constrained Minimisation	7
		1.1.3	Methods Based on Computing	
			Bases for $ar{\Omega}$	16
		1.1.4	Methods Based on Computing	
			Bases for Ω_{0}	23
	1.2	Extens	ions of Projection Algorithms	
		for so		
	Constrained Problem			29
		101	Extensions for Nonlinear	
		1.2.1		
			Constraints	30
		1.2.2	Active Set Strategies	38
	1.3	Review	and Original Contributions	40

Chapter 2	PROJECTION METHODS FOR COMPUTING
	FEASIBLE POINTS OF LINEARLY
	CONSTRAINED REGIONS

2.1	Introd	uction	43
	2.1.1	The Feasible Region	44
	2.1.2	The Linear Dependence of	
		Constraint Normals	48
	2.1.3	A Projection Algorithm	52
2.2	Projec	tion Algorithms, Redundancy	
	and De	generacy	61
	2.2.1	Degeneracy, Redundant	
		Constraints, Infeasibility	
		and Computational	
		Considerations	61
	2.2.2	Projection Algorithms for	
		Computing Feasible Points	
		of a Linearly Constrained	
		Region	67
2.3	Conclu	ding Remarks	74

Chapter 3 AN ALGORITHM FOR POSITIVE DEFINITE QUADRATIC PROGRAMMING

3.1	Intro	76	
	3.1.1	The Unconstrained Minimum	77
	3.1.2	The Quadratic Programming	
		Problem	78
3.2	Proje	ction Operators	79
	3.2.1	Preliminaries	79
	3.2.2	Projections in E ⁿ	80
3.3	Motiva	ation for a Positive Definite	
	Quadra	82	
	3.3.1	The Quadratic Objective	
		Function	82
	3.3.2	Inequality Constraints and	
		the Unconstrained Optimum	90
3.4	The A1	The Algorithm	
	3.4.1	A Positive Definite Quadratic	
		Programming Algorithm	97
	3.4.2	The Positive Semi-Definite	
		and Indefinite Cases	100
	3.4.3	Extensions to Monlinear	
		Constraints	101

	3.5	Recurrance Relations	110
		3.5.1 Updating N* and Related	
		Operators	111
		3.5.2 Updating $(N_m^T H N_m)^{-1}$	120
		3.5.3 Linear Dependence	123
	3.6	Convergence	125
	3.7 (Concluding Remarks	130
		Appendix: Numerical Results	131
Chapter 4	OPTI	MISATION WITH LINEAR AND	
		INEAR CONSTRAINTS	
	4.1	Introduction	135
		4.1.1 Projection Algorithms	
		for Nonlinear	
		Programming	137
		4.1.2 Approximations to the	
		Inverse Hessian and the	
		Computation of Constrained	
		Descent Directions	144
	4.2	Convergence of the Algorithm	156
		4.2.1 Stepsize Strategies	156

	4.2.2 Convergence Proofs:				
	Exact Second Derivatives	167			
	4.2.3 Convergence Proofs:				
	Approximate Second				
	Derivatives	180			
	4.3 Concluding Remarks	218			
Chapter 5	THE ITERATIVE SPECIFICATION OF				
	OBJECTIVE FUNCTIONS IN ECONOMIC				
	POLICY OPTIMISATION:				
	AN APPLICATION OF PROJECTION				
	METHODS				
	5.1 Introduction	219			
	5.2 Preliminaries	220			
	5.3 The Conceptual Algorithm	228			
	5.4 Computational Considerations				
	for the Implementation of the				
	Algorithm	233			
	5.5 Conclusions	238			
	Appendix: A Numerical Example	240			
	A.1 The Structure of the				
	Objective Function	243			
	A.2 First Respecification	245			

		A.3	Second Respecification	249
		A.4	Third Respecification	252
Chapter 6	POLICY OP	TIMISAT	TION ALGORITHMS	
	FOR NONLI	NEAR EC	CONOMETRIC MODELS	
	6.1 Intr	oductio	on ·	258
	6.2 Poli	cy Opti	misation	
	and	Simulat	i ons	260
	6.3 A Ne	vton-Ty	pe Algorithm	263
	6.4 A Qua	asi-New	ton Algorithm	274
	6.5 Conc	ludi ng	Remarks	282
	Арреі	ıdix:	Nummerical Results	283
Chapter 7	SUGGESTION	IS FOR	FURTHER RESEARCH	289
REFERENCES F	OR CHAPTER	1		291
REFERENCES F	OR CHAPTER	2		299
REFERENCES F	OR CHAPTER	3		301
REFERENCES F	OR CHAPTER	4		304
REFERENCES F	OR CHAPTER	5		309
REFERENCES F	OR CHAPTER	6		311
REFERENCES FO	OR CHAPTER	7		315