CONTENTS

Foreword ... xi
Preface .. xiii
Notation ... 1

Chapter 1. An Introduction to Optimization Theory 6

1. Convex Sets and Convex Functions 6
2. Differentiability of Convex Functions 16
3. Necessary and Sufficient Conditions of a Local Extremum of Functions of Many Variables 27
4. Necessary and Sufficient Conditions for a Minimum of Functions on Sets 34
5. Properties of Minimax Problems 40
6. Conditions for a Minimum in Nonlinear Programming Problems Without Differentiability 60
7. Conditions for a Minimum in Nonlinear Programming Problems With Differentiability 75
8. Necessary Conditions for a Minimum in Optimal Control Problems .. 94

Chapter 2. Convergence Theorems and Their Application to the Investigation of Numerical Methods 107

1. Stability of the First-Order Approximation 107
2. The Method of Lyapunov Functions 115
3. Theorems on Convergence of Iterative Processes 129
4. Convergence of Processes Generated by Multivalued Mappings .. 145
5. Methods for Solving Systems of Nonlinear Equations 152
Chapter 3. The Penalty-Function Method 196

1. The Exterior Penalty-Function Method 197
2. Estimation of Accuracy .. 215
3. The Cost-Function Parametrization Method 234
4. The Interior Penalty-Function Method 245
5. The Linearization Method .. 255

Chapter 4. Numerical Methods for Solving

Nonlinear Programming Problems

Using Modified Lagrangians ... 264

1. The Simplest Modification of the Lagrangian 265
2. Modified Lagrangians .. 279
3. Proof of Convergence for the Simple
 Iteration Method ... 286
4. Solution of Convex Programming Problems 301
5. Reduction to a Maximin Problem 310
6. Reduction to a Minimax Problem 321

Chapter 5. Relaxation Methods for Solving

Nonlinear Programming Problems 330

1. Application of the Reduced Gradient Method
 to Solving Problems With Equality-Type
 Constraints .. 330
2. A Generalization of the Reduced Gradient
 Method .. 336
3. A Discrete Version of the Reduced
 Gradient Method .. 351
4. The Conditional Gradient Method 355
5. The Gradient Projection Method 361

Chapter 6. Numerical Methods for Solving

Optimal Control Problems .. 364

1. Basic Computational Formulas 367
2. Necessary and Sufficient Conditions
 for A Minimum ... 383
3. Numerical Methods Based on the Reduction to Nonlinear Programming Problems 388
4. Discrete Minimum Principles 398
5. Numerical Methods Based on Discrete Minimum Principle 418
6. Some Generalizations 423
7. Examples of Numerical Computations 434
8. An Application to Differential Games 455

Chapter 7. Search for Global Solutions 465
1. The General Notion of Coverings 466
2. Covering a Parallelepiped 474
3. Solution of Nonlinear Programming Problems 491
4. Solution of Systems of Algebraic Equations 502
5. Solution of Minimax Problems 505
6. Solution of Multicriteria Problems 509

Appendix I. Differentiability 517
Appendix II. Some Properties of Matrices 522
Appendix III. Some Properties of Mappings 530

Notes and Comments 533
References 539
Index 554
List of Forthcoming Publications 559
Transliteration Table 561