Table of Contents

Chapte	er 0. Mathematical Preliminaries	 •	•	•	. 1
0.1	Linear Algebra and Linear Programming				. 1
	Basic Notation				. 1
	Hulls, Independence, Dimension				
	Eigenvalues, Positive Definite Matrices				. 4
	Vector Norms, Balls				. 5
	Matrix Norms				
	Some Inequalities				
	Polyhedra, Inequality Systems				. 9
	Linear (Diophantine) Equations and Inequalities				
	Linear Programming and Duality				. 14
0.2	Graph Theory				. 16
	Graphs				
	Digraphs				
	Walks, Paths, Circuits, Trees				
	, , ,				
_	er 1. Complexity, Oracles, and Numerical Computat				
_	Complexity Theory: $\mathscr P$ and $\mathscr {NP}$. 21
_	Complexity Theory: \mathscr{P} and \mathscr{NP}				. 21 . 21
_	Complexity Theory: \mathcal{P} and \mathcal{NP}				. 21 . 21
_	Complexity Theory: \mathscr{P} and \mathscr{NP}	 			. 21 . 21 . 22 . 23
_	Complexity Theory: \mathscr{P} and \mathscr{NP}	 			. 21 . 21 . 22 . 23
_	Complexity Theory: \mathscr{P} and \mathscr{NP}	 			. 21 . 21 . 22 . 23
1.1	Complexity Theory: \mathscr{P} and \mathscr{NP}	 			. 21 . 21 . 22 . 23 . 24
1.1	Complexity Theory: \mathscr{P} and \mathscr{NP}	 			. 21 . 22 . 23 . 23 . 24 . 26
1.1	Complexity Theory: \mathscr{P} and \mathscr{NP}	 			. 21 . 22 . 23 . 23 . 24 . 26
1.1	Complexity Theory: \mathscr{P} and \mathscr{NP}	 			. 21 . 21 . 22 . 23 . 24 . 26 . 26
1.1	Complexity Theory: \mathscr{P} and \mathscr{NP}	 			. 21 . 21 . 22 . 23 . 23 . 24 . 26 . 26 . 27
1.1	Complexity Theory: \mathscr{P} and \mathscr{NP}				. 21 . 21 . 22 . 23 . 24 . 26 . 26 . 27 . 28
1.1	Complexity Theory: \mathscr{P} and \mathscr{NP}				. 21 . 21 . 22 . 23 . 24 . 26 . 26 . 27 . 28
1.1	Complexity Theory: \mathscr{P} and \mathscr{NP}				. 21 . 21 . 22 . 23 . 24 . 26 . 26 . 27 . 28 . 29 . 29

The sections and chapters marked with * are technical. We recommend that the reader skip these on the first reading.

Tabl	le of	Contents

X

1.4	Pivoting and Related Procedures	36
	Gaussian Elimination	36
	Gram-Schmidt Orthogonalization	40
	The Simplex Method	41
	Computation of the Hermite Normal Form	43
Chapte Formu	er 2. Algorithmic Aspects of Convex Sets:	46
2.1	Basic Algorithmic Problems for Convex Sets	47
* 2.2	Nondeterministic Decision Problems for Convex Sets	56
-		
Chapte		64
3.1	Geometric Background and an Informal Description	66
	Properties of Ellipsoids	66
	Description of the Basic Ellipsoid Method	73
	Proofs of Some Lemmas	76 80
	Implementation Problems and Polynomiality Some Examples	83
. 20	•	86
	The Central-Cut Ellipsoid Method The Shallow-Cut Ellipsoid Method	94
* 3.3	The Shahow-Cut Empsoid Method	, .
Chapte	er 4. Algorithms for Convex Bodies	102
-		102
4.1	•	105
* 4.2	Optimization from Separation	107
* 4.3	Optimization from Membership	114
* 4.4	Equivalence of the Basic Problems	
* 4.5	Some Negative Results	118
* 4.6	Further Algorithmic Problems for Convex Bodies	122
* 4.7	Operations on Convex Bodies	128
	The Sum	128
	The Convex Hull of the Union	129
	The Intersection	129
	Polars, Blockers, Antiblockers	131
Cha	Discharges Approximation and Rasis Deduction	133
-	er 5. Diophantine Approximation and Basis Reduction	134
	Continued Fractions	134
5.2		138
	Problems	400
	Basis Reduction in Lattices	
* 5.4	More on Lattice Algorithms	150

	Table of Contents	XI
Chapter 6. Rational Polyhedra		157
6.1 Optimization over Polyhedra: A Preview		157
* 6.2 Complexity of Rational Polyhedra		162
* 6.3 Weak and Strong Problems		170
* 6.4 Equivalence of Strong Optimization and Separ	ation	174
* 6.5 Further Problems for Polyhedra		181
* 6.6 Strongly Polynomial Algorithms		188
* 6.7 Integer Programming in Bounded Dimension		192
Chapter 7. Combinatorial Optimization: Some Basic	Examples	197
7.1 Flows and Cuts		197
7.2 Arborescences		201
7.3 Matching		203
7.4 Edge Coloring		208
7.5 Matroids		210
7.6 Subset Sums		218
7.7 Concluding Remarks		221
* Chapter 8. Combinatorial Optimization: A Tour d'H	orizon	225
* 8.1 Blocking Hypergraphs and Polyhedra		225
* 8.2 Problems on Bipartite Graphs		229
* 8.3 Flows, Paths, Chains, and Cuts		233
* 8.4 Trees, Branchings, and Rooted and Directed C	uts	242
Arborescences and Rooted Cuts		242
Trees and Cuts in Undirected Graphs		247
Dicuts and Dijoins		251
* 8.5 Matchings, Odd Cuts, and Generalizations		254
Matching		255
b-Matching		257 259
T-Joins and T-Cuts		262
* 8.6 Multicommodity Flows		266
		272
* Chapter 9. Stable Sets in Graphs		272
* 9.1 Odd Circuit Constraints and t-Perfect Graphs		273
* 9.2 Clique Constraints and Perfect Graphs		276
Antiblockers of Hypergraphs		284
* 9.3 Orthonormal Representations		285
* 9.4 Coloring Perfect Graphs		296
* 9.5 More Algorithmic Results on Stable Sets		299

XII Table of Contents

Chapter	10. Su	ıbmo	dul	ar l	Tun	ctic	ons													304
* 10.1	Submodular Functions and Polymatroids															304				
	Algorithms for Polymatroids and Submodular Functions																			
	Packing	Bas	es	of a	M	atr	oid	l	-											311
* 10.3	Submod Crossing	lular g Fa	· Fu	ınct ies	ion	s o	n I	La:	ttic	æ,	In	ter	se	ctii	ng,	nd				313
* 10.4																				
Referen	ces .																			331
Notatio																				
Author	Index																			351
Subject	Index																	٠		355

Five Basic Problems (see inner side of the back cover)