Contents

		Page
CHAPTER	1. KINEMATICS OF CONTINUOUS MEDIA	1
1.1.	Material and Spatial Coordinates	1
1.2.	Neighborhood Transformations	3
1.3.	Composition of Changes of Configuration	6
1.4.	Measure of the State of Local Deformation. Green's and Jaumann's Strain	8
1.5.	Rigid-Body Rotations of a Neighborhood	10
1.6.	The Kinematical Decomposition of the Jacobian Matrix	17
1.7.	Geometric Interpretation of Infinitesimal Strains	20
1.8.	The Eulerian Viewpoint in Kinematics. Almansi's Strain	22
1.9.	Eulerian Measures of Rates of Deformation and Rotation	23
1.10.	Temporal Variation of the Polar Decomposition of the Jacobian Matrix	26
CHAPTER	2. STATICS AND VIRTUAL WORK	29
2.1.	The Concept of Stress. True Stress	29
2.2.	The Piola Stresses	33
2.3.	Translational Equilibrium Equations	35
2.4.	Rotational Equilibrium Equations	36
2.5.	Statics and Virtual Work	38
2.6.	Commutativity of the Operators δ and $D_{\dot{1}}$	40
2.7.	Virtual Work in a Continuous Medium	42
2.8.	Statics and Virtual Power for True Stresses	43
2.9.	Statics and Virtual Work in Infinitesimal Changes of Configuration	46

		Page
CHAPTER	3. CONSERVATION OF ENERGY	48
3.1.	Constitutive Equations for Piola's Stresses	48
3.2.	The Kirchhoff-Trefftz Stresses	51
3.3.	The Constitutive Equations of Geometrically Linear Elasticity	54
CHAPTER	4. CARTESIAN TENSORS	56
4.1.	Bases and Change of Basis	56
4.2.	Tensors	58
4.3.	Some Special Tensors	61
4.4.	The Vector Product	64
4.5.	Structure of Symmetric Cartesian Tensors of Order Two. Principal Axes	65
4.6.	Fundamental Invariants and the Deviator	71
4.7.	Structure of Skew-Symmetric Cartesian Tensors of the Second Order	74
4.8.	Matrix Representation of Tensor Operations	77
CHAPTER	5. THE EQUATIONS OF LINEAR ELASTICITY	81
5.1.	Compatibility of Strains in a Simply Connected Region	81
5.2.	Compatibility of Strains in a Multiply Connected Region	90
5.3.	Principal Elongations and Fundamental Invariants of Strain	97
5.4.	Principal Stresses and Fundamental Invariants of the Stress State	98
5.5.	Octahedral Stresses and Strains	99
5.6.	Mohr's Circles	100
5.7.	Statics and Virtual Work	103
5.8.	Taylor's Development of the Strain Energy	104
5.9.	Infinitesimal Stability	108
5.10.	Hadamard's Condition for Infinitesimal	110

		Page
5.11	. Isotropy and Anisotropy	113
5.12	. Criteria for Elastic Limits	122
5.13	Navier's Equations	128
5.14	. The Beltrami-Michell Equations	133
CHAPTER	6. EXTENSION, BENDING, AND TORSION OF PRISMATIC BEAMS	135
6.1.	Green's and Stokes' Formulas	136
6.2.	The Centroid	137
6.3.	Moments of Inertia	138
6.4.	The Semi-Inverse Method of Saint-Venant	141
6.5.	Resultants of Stresses on a Cross Section	143
6.6.	Calculation of the Transverse Displacements	147
6.7.	Equations Governing the Shear Stresses	150
6.8.	Calculation of the Longitudinal Displacement	152
6.9.	Separation of Solutions	157
6.10.	Pure Torsion	159
6.11.	The Center of Torsion for a Fully Constrained Section	163
6.12.	Bending without Torsion	164
6.13.	The Stiffness Relation for the Twist	171
6.14.	Total Energy as a Function of the Deformations of the Fibers	172
6.15.	Total Energy as a Function of Generalized Forces	174
6.16.	The Generalized Constitutive Equations for Bending and Torsion of Beams	174
6.17.	One-Dimensional Formulation of Bending and Torsion of Beams	178
6.18.	Applications	181
	A. Stress function for torsion of the elliptic bar	182

		Page
В.	Stress functions for torsion of the circular bar	184
С.	Stress functions with poles	184
D.	Torsion of a triangular bar	191
Ε.	Torsion of a rectangular bar	192
F.	Bending of a circular bar	194
G.	Bending of a circular tube	196
Н.	Bending of a rectangular bar	198
CHAPTER 7.	PLANE STRESS AND PLANE STRAIN	201
7.1. Lem	mas for the Integration of Partial Differ- ial Equations in Complex Form	201
. 7.2. The	Structure of a Biharmonic Function	204
7.3. Str Pla	ucture of the Solution of the Problems of ne Strain	205
7.4. Str Pla	ucture of the Solution of the Problem of ne Stress	208
7.5. Gen	eralized Plane Stress	211
7.6. Air	y's Stress Function	213
7.7. Com	plex Representation of Airy's Function	217
7.8. Pol	ar Coordinates	218
7.9. App	lications in Cartesian Coordinates	226
Α.	The state of hydrostatic stress	227
В.	Uniform gradient of areal dilation	227
С.	Pure uniform shear	229
D.	Linear variation of a normal stress	229
Ε.	Simple extension	231
F.	Pure bending	231
G.	Shear lag	231
н.	Bending by shear forces	232
I.	Saint-Venant's bending of a rectangular beam	222

		Page
	J. Transverse loading of a beam with flanges	235
7.10.	Applications in Polar Coordinates	238
	A. Circular aperture with traction-free circum- ference in a plate in plane stress	244
	B. Volterra's dislocation of the circular ring	248
	C. Bending of beams with constant curvature	251
	D. The annular ring loaded by shear tractions	267
	E. The thick tube under pressure	269
	F. Concentric cylindrical tubes and rings	271
	G. Force concentrated at the origin in an infinite plate	272
CHAPTER	8. BENDING OF PLATES	276
8.1.	Basic Hypotheses	277
8.2.	Application of the Canonical Variational Principle	278
8.3.	The Two-Dimensional Canonical Principle	284
8.4.	Further Connections Between the Two- and Three-Dimensional Theories	287
8.5.	Other Types of Approximations	288
8.6.	Kirchhoff's Hypothesis	291
8.7.	Boundary Conditions in Kirchhoff's Theory	294
8.8.	Kirchhoff's Variational Principle	298
8.9.	Structure of the Solution of the Equations of Plates of Moderate Thickness	300
8.10.	The Edge Effect	305
8.11.	Torsion of a Plate	306
8.12.	Saint-Venant's Bending of a Plate	311
8.13.	Particular Solutions for Transverse Load	315
8.14.	Solutions in Polar Coordinates	317
8.15.	Axisymmetric Bending	319
BIBLIOGR	АРНҮ	322
INDEX		3 25