CONTENTS

PREFACE

CHAPTER 1.	INTRODUCTION TO NONLINEAR WAVES		
1.1	One dimensional linear equation	• • •	1
1.2	A basic nonlinear wave equation		2
1.3	Expansion Wave		7
1.4	Centred expansion wave	* * *	10
1.5	Breaking	•••	12
CHAPTER 2.	EXAMPLES		
2.1	Traffic flow	• • •	17
2.2	Flood waves in rivers	•••	20
2.3	Chemical exchange processes		21
2.4	Glaciers	•••	22
2.5	Erosion	• • •	23
CHAPTER 3.	SHOCK WAVES		
3.1	Discontinuous shocks	• • •	24
3.2	Equal area rule	•••	27
3.3	Asymptotic behavior	•••	29
3.4	Shock structure	•••	33
3.5	Burgers' equation	• • •	38
3.6	Chemical exchange processes; Thomas's equation	•••	40

CHAPTER 4.	A SECOND ORDER SYSTEM: SHALLOW WATER WAVE	<u>s</u>	
4.1	The equations of shallow water theory	•••	43
4.2	Simple waves	• • •	46
4.3	Method of characteristics for a system	•••	50
4.4	Riemann's argument for simple waves	•••	52
4.5	Hodograph transformation	•••	54
CHAPTER 5.	WAVES ON A SLOPING BEACH: SHALLOW WATER THI	EORY	
5.1	Shallow water equations	•••	57
5.2	Linearised equations	•••	59
5.3	Linear theory for waves on a sloping beach	•••	60
5.4	Nonlinear waves on a sloping beach	•••	67
5.5	Bore on beach	•••	76
5.6	Edge waves	•••	76
5.7	Initial value problem and completeness	• • •	80
5.8	Weather fronts	•••	82
CHAPTER 6.	FULL THEORY OF WATER WAVES		
6.1	Conservation equations and the boundary value problem	• • •	83
6.2	Linearised theory	•••	89

CHAPTER 7.	WAVES ON A SLOPING BEACH: FULL THEORY		
7.1	Normal incidence	• • •	93
7.2	Shallow water approximation	• • •	106
7.3	Behavior as $\beta \rightarrow 0$	• • •	108
7.4	General β	• • •	110
7.5	Oblique incidence and edge waves	•••	111
7.6	Oblique incidence, $k < \lambda < \infty$	•••	115
7.7	Edge waves, $0 < \lambda < k$	•••	119
CHAPTER 8.	EXACT SOLUTIONS FOR CERTAIN NONLINEAR EQUATI	ONS	
8.1	Solitary waves	• • •	125
8.2	Perturbation approaches	•••	127
8.3	Burgers' and Thomas's equations	•••	128
8.4	Korteweg-de Vries equation	•••	135
8.5	Discrete set of α 's, interacting solitary waves	• • •	138
8.6	Continuous range; Marcenko integral equation	• • •	140
8.7	The series solution	•••	143
8.8	Other equations	•••	145
	BIBLIOGRAPHY	•••	147