Contents

Preface		ix
Drawin	g	xi
Exchan	ge and capture in the planar restricted parabolic 3-body problem	1
Martha	Alvarez-Ramírez and Joaquín Delgado, Josep Maria Cors	
1	Historical review of escapes and capture	2
2	Final evolutions in the restricted 3-body problem	5
	2.1 Restricted parabolic problem	6
	2.2 Hyperbolic restricted problem	7
•	2.3 Circular restricted problem	7
3	Scope and structure of the paper	8
4	The restricted parabolic 3-body problem in pulsating coordinates	8
5	Gradient-like property of the global flow	12
6	The asymptotic system	16
7	Structure of parabolic escape orbits	18
8	Criteria for elliptic-parabolic motion	20
9	Numerical results	23
	nvariant Curves on Billiard Tables and the Birkhoff-Herman Theorem	29
Edoh Y.		
1	Integrability	29
	1.1 Physical Integrability	29
•	1.2 Geometric Integrability	30
2 3	Definitions	30
	Convexity	32
4	Folds	32
5	A differentiable limit curve with constant homotopy	33
	ction of Periodic Orbits in Hill's Problem for $C \gtrsim 3^{\frac{4}{3}}$ Belbruno	37
1	Introduction	37
2	Hill's Problem	39
3	Construction of Periodic Orbits by Homotopic Continuation	45
App	endix	60

vi HAMSYS-2001

		e choreographies?	63
Alain Cl		1	63
1		rculant mass matrix	65
2	_	ed decompositions	67
3		quations of perversity	68
4		ographies with less than 6 bodies	72
5		ographies	
6		onal relative equilibria	73
7	Two q	uestions	75
		collision in the tetrahedral non-rotating four body problem	77
Joaquín	_	, Claudio Vidal	** 0
1	Introd		78
2		nent of the problem	78
3		up of total collision	80
4		d configurations	83
	4.1	Linear stability of central configurations	86 87
		anar (rhomboidal) configuration	88
_	-	patial (tetrahedral) configuration	89
5		rization of the flow at the critical points	07
	5.1	Linearization at the critical points P^{\pm} associated to the planar configuration p .	91
	5.2	Linearization at the critical points $E_{1,2}^\pm$ associated to the tetra-	0.1
		hedral configurations $e_{1,2}$	91
6	Regul	arization of single binary collisions	92
Symbol	ic Dynam	ics for Transition Tori-II	95
Marian	Gidea, C	lark Robinson	
1		luction	95
2		Conley index and correctly aligned windows	97
3	Prelin	ninary results	100
4	Proof	of the Main Theorem	102
A Surve	y on Bifu	arcations of Invariant Tori	109
Heinz, F	lanßmanr	ı	
1		luction	109
2		cations of equilibria	110
	2.1	Bifurcations at zero eigenvalues	111
	2.2	The Hamiltonian Hopf bifurcation	112
3		cations of periodic orbits	113
	3.1	Bifurcations inherited from equilibria	113 114
	3.2	The Hamiltonian flip bifurcation	
4		cations of Floquet-tori	114
	4.1 4.2	Bifurcations of co-dimension one Bifurcations of higher co-dimension	116 117
5		cibility	119
3	Reuu	MOINLY	エスク

Contents		vii
	g the Lagrange solution to the general three body problem a. Jiménez-Lara	123
1	Introduction	123
2	Hamilton equations	127
3	The lagrange case of the three-body problem	129
4	Dimensionless variables	132
5	Perturbing the Lagrange solution	133
Horseshoe	e periodic orbits in the restricted three body problem	137
J. Llibre, I	Mercè Ollé	
1	Introduction	137
2	The restricted three-body problem	138
3	Horseshoe periodic orbits and the invariant manifolds of Lyapunov periodic orbits emanating from L_3	139
Instability	of Periodic Orbits in the Restricted Three Body Problem	153
	fin, Wojciech Skoczylas	155
1	Introduction	153
2	Planar R3BP, mass normalized to one	155
3	A variational principle for hyperbolicity	158
4	Fixed energy variational problem	161
	and the Integral Manifolds of the Spatial N-Body Problem er McCord	169
1	Introduction	169
2	The Manifolds	170
3	The Vector Field α	173
	3.1 Away from Collinear	174
,	3.2 At Collinear	175
4	Limiting Behavior	175
5	Coordinates near Syzygies	177
6	Homology of the Integral Manifolds	178
7	The Three-Body Problem	179
	and bifurcation near the transition from stability to complex instability R. Pacha and J. Villanueva	185
1	Introduction	185
2	Formulation of the problem and methodology	186
3	Normal form process	187
	 3.1 The Jordan structure of the monodromy matrix 3.2 The quadratic part of the Hamiltonian in the adapted coordi- 	187
4	nates Normal form at higher order	188 190
5	The resonant normal form	
5 6		192
-	Unfolding and stability of the bifurcated 2-dimensional tori	193
Invariant N	Manifolds of Spatial Restricted Three-Body Problems: the Lunar Case	199

Contents

viii HAMSYS-2001

Jesús Pala	cián, Patricia Yanguas	
1	Introduction	200
	1.1 Canonical Variables for the Problem	200
	1.2 Aim and Scope of the Paper	203
2	The Normal Form Setting	204
	2.1 Making Formal Integrals with Lie Transformations	204
	2.2 Change of Co-ordinates	206
3	Passage to a 2DOF System	206
	3.1 The Normalisation of Delaunay	206
	3.2 Analysis of the Resulting System in $S^2 \times S^2$	209
4	Passage to another 2DOF System	212
	4.1 The Elimination of the Node	212
	4.2 Analysis of the Resulting System in $\mathbb{R}^6/(\mathbb{S}^1 \times \mathbb{S}^1)$	214
5	Passage to a 1DOF: the Integrable Approximation	216
	5.1 The Second Normalisation	216
	5.2 The Resulting System: Quasi-Periodic Orbits and 2D Tori	217
	5.3 New Families of Symmetric Periodic Orbits	221
Path Integ	ral Quantization of the Sphere	225
Walter Re	~	
1	Preliminaries	225
_	1.1 The 1-Step Propagator	225
	1.2 The Propagator	229
2	An Idea of the General Case	229
	2.1 The 1-Step Propagator	229
	2.2 The Propagator	231
3	Case $M = S^n$	232
4	Propagators for α -densities	235
Non-holo	nomic systems with symmetry allowing a conformally	
	ectic reduction	239
	M. Rios and Jair Koiller	
1	Introduction	239
2	The contact non-holonomic system	240
3	Almost-poisson brackets via moving frames	241
4	Contact almost-Poisson structure	243
5	The compressed system	244
6	The conformally symplectic structure on the compressed system	246
7	Non-Jacobi for the constrained almost-Poisson	247
8	Non-Jacobi for the constrained almost-Poisson, bis	248
9	The compressed almost-Poisson structure is not conformally sym-	
	plectic in general	250
10	Conclusions	251

Index 253