CONTENTS | SERIES EDITOR'S | FOREWORD | ix | |-----------------|--------------------------------|----| | PREFACE | | хi | | CHAPTER 1 | INTRODUCTION: ONE-DIMENSIONAL | | | | TRANSPORT THEORY | 1 | | 1.1 | One-Dimensional Transport | 1 | | 1.2 | Numerical Solution | 6 | | 1.3 | Derivation Continued | 7 | | 1.4 | Analytical Rederivation | 10 | | 1.5 | Several Additional Functions: | | | • | X and Y | 18 | | 1.6 | Internal Intensity Functions | 21 | | 1.7 | Internal Intensities due to | | | | Internal Sources | 27 | | 1.8 | Discussion | 28 | | | Exercises | 29 | | CHAPTER 2 | ISOTROPIC SCATTERING IN SLABS: | | | | AUXILIARY PROBLEM | 31 | | 2.1 | Introduction | 31 | | 2.2 | Emergence Probability | | | 2.3 | Monodirectional Illumination - | | | - | Integral Equation | 37 | | | | Page | |-------------------|---|-------------------| | 2.4
2.5 | Monodirectional Illumination -
Cauchy System for Source Function
Computational Method and Results | 42
49 | | 2.6
2.7 | Monodirectional Illumination - Internal Intensity Function Monodirectional Illumination - | 69 | | 2.8 | Reflected and Transmitted
Intensities
Discussion | 82
92 | | | Exercises
References | 93
94 | | CHAPTER 3 | THE BASIC PROBLEM: b AND h FUNCTIONS | 95 | | 3.1
3.2 | Omnidirectional Illumination
Relationships Between Basic | 95 | | 3.3 | and Auxiliary Problems Cauchy System for b and h | 100 | | 3.4 | Functions Numerical Method and Results | 108
118 | | | Exercises
References | 131
132 | | CHAPTER 4 | INTERNAL SOURCES | 133 | | 4.1
4.2 | Introduction
Cauchy System for Source Functions,
and Emergent and Internal Inten- | 133 | | 4.3
4.4 | sities Numerical Method and Examples Inverse Problems for Estimation | 134
144 | | 4.5 | of Source Distribution Quasilinearization | 148
150 | | 4.6
4.7
4.8 | Numerical Method and Results
for Inverse Problems
Resolvent
Representation Formula | 155
160
171 | | | Exercises
References | 176
177 | | | | Page | |---------------------------------|---|---------------------------------| | CHAPTER 5 | INHOMOGENEOUS MEDIA | 179 | | 5.1
5.2
5.3
5.4 | Derivation of Cauchy System
Numerical Method
Numerical Results
Inverse Problems | 179
186
188
190 | | | Exercises
References | 199
200 | | CHAPTER 6 | REFLECTING SURFACES | 201 | | 6.1
6.2 | Lambert Law Reflector
Lambert's Law Reflectors - | 201 | | 6.3
6.4 | A Reduction Specular Reflectors Equivalence Relationships Between Diffuse Radiation Fields for Finite Slabs Bounded by a Perfect Specular Reflector and a Perfect | 220
229 | | 6.5 | Absorber
Inverse Problems | 247
255 | | | Exercises
References | 259
260 | | CHAPTER 7 | ANISOTROPIC SCATTERING | 261 | | 7.1
7.2
7.3
7.4
7.5 | The Basic Integral Equation
and Cauchy System
Axially Symmetric Radiation Fields
Discussion
Expansion in Legendre Polynomials
Estimation of Phase Functions
Based on Multiple Scattering Data | 261
269
285
285
288 | | | Exercises
References | 292
293 | | BIBLIOGRAPHY | | 294 | | APPENDICES | | 297 | | INDEX | | 335 |