TABLE OF CONTENTS | | | | Page | | |--------------|------------|---|--|--| | INTRODUCTION | | | | | | CHAPTER | 1: | EQUATIONS OF MOTION | 5 | | | CHAPTER | 2: | POTENTIAL VORTICITY
Problems | 11
15 | | | CHAPTER | 3: | NON-DIMENSIONAL PARAMETERS
Problems | 17
20 | | | CHAPTER | 4: | GEOSTROHIC FLOW Taylor-Proudman Theorem Taylor Column Application to Geophysical Motion β-Plane Approximation Problems | 21
23
26
28
33 | | | CHAPTER | 5: | THE EKMAN LAYER Ekman Layer Equations Example of Cylindrical Flow Ekman Layer Spiral Mass Transport in the Ekman Layer Spin-up Time Scale Tea-cup Experiment Problems | 3593644
4455
55 | | | CHAPTER | 6 : | THE GEOSTROPHIC MODES The Geostrophic Mode in a Sphere Geostrophically Free, Guided, and Blocked Regions Circulation Problems | 57
58
62
63
65 | | | CHAPTER | 7: | INERTIAL MODES \(\lambda\) Real and \(\lambda < 2\) Orthogonality Mean Circulation Theorem Initial Value Problem Inertial Modes in a Cylinder Plane Wave Solution Problems | 67
68
70
71
72
74
77
80 | | | CHAPTER | 8: | ROSSBY WAVES Sliced Cylinder β-Plane Problem Plane Wave Solution Problems | 85
86
89
95
97 | | | CHAPTER | 9: | VERTICAL SHEAR LAYERS E ^{1/3} -Layer E ^{1/4} -Layer Sliced Cylinder | 99
100
102
110 | | | | | An Ocean Model: Sverdrup's Relation Problems | 114
120 | | | | | Page | |--------------|---|--| | CHAPTER 10: | STRATIFICATION | 123 | | | Problems | 131 | | CHAPTER 11: | THE NORMAL MODE PROBLEM FOR ROTATING STRATIFIED FLOW The Steady Flow Potential Vorticity Problems | 133
137
141
147 | | CHAPTER 12: | ROSSBY WAVES IN A ROTATING
STRATIFIED FLUID | 151 | | | The Potential Vorticity Equation
Rossby Waves for a Stratified Fluid
Rossby Radius of Deformation
Problems | 151
153
156
159 | | CHAPTER 13: | INTERNAL WAVES IN A ROTATING
STRATIFIED FLUID | 161 | | | Plane Wave Solution Waves in Bounded Geometry Variable N(z) Oceanographic Results Problems | 163
166
176
187
189 | | CHAPTER 14: | BOUNDARY LAYERS IN A ROTATING
STRATIFIED FLUID
The Stratified Ekman Layer
The Side-wall Layers
Problems | 191
193
196
206 | | CHAPTER 15: | SPIN-DOWN IN A ROTATING
STRATIFIED FIJID | 209 | | | Spin-down in a Cylinder Secular Growth The Steady Solution The Decaying Modes Further Comments Problems | 212
219
220
222
226
228 | | CHAPTER 16: | BAROCLINIC INSTABILITY The Eady Model The Stability Criterion Experiments: Laboratory Models Problems | 23]
232
236
243
247 | | APPENDIX | BOUNDARY LAYER METHODS | 249 | | BIBLIOGRAPHY | | 263 | | INDEX | | |