Contents

Preface to the Revised English Edition v

Foreword to the Second Edition vii

Introduction 1

Chapter I. Review of Matrices and Quadratic Forms 9
 1. Matrices and operations on matrices 9
 2. Sylvester’s identity 12
 3. Eigenvalues and eigenvectors of a matrix 14
 4. Real symmetric matrices 21
 5. Reduction of a quadratic form to the principal axes 23
 6. Reduction of a quadratic form to a sum of squares 28
 7. Positive quadratic forms 34
 8. Hadamard’s inequality 36
 9. Simultaneous reduction of two quadratic forms to sums of squares 42
 10. Minimax properties of eigenvalues of a pencil of forms 50
 11. Reduction of a matrix to a triangular form 60
 12. Polynomials of matrices 63
 13. Associated matrices and the Kronecker theorem 64

Chapter II. Oscillatory Matrices 67
 1. Jacobi matrices 67
 2. Oscillatory matrices 74
 3. Examples 76
 4. Perron’s theorem 83
 5. Eigenvalues and eigenvectors of an oscillatory matrix 86
 6. A fundamental determinantal inequality 91
 7. Criterion for a matrix to be oscillatory 97
 8. Properties of the characteristic determinant of an oscillatory matrix 105
 9. Eigenvalues of an oscillatory matrix as functions of its elements 108

Chapter III. Small Oscillations of Mechanical Systems with \(n \) Degrees of Freedom 113
 1. Equations of small oscillations 113
 2. Oscillations of Sturm systems 118
 3. Second method of setting up the equations of small oscillations of mechanical systems 129
 4. Influence functions 131
5. Chebyshev systems of functions 136
6. The oscillatory character of the influence function of a segmental continuum 142
7. Influence function of a string 146
8. Influence function of a rod 148
9. Small oscillations of an elastic continuum with n concentrated masses 157
10. Small oscillations of a segmental continuum 160
11. Oscillations of a system of concentrated masses placed on a multi-span beam 163

Chapter IV. Small Oscillations of Mechanical Systems with an Infinite Number of Degrees of Freedom 167
1. Principal premises 167
2. Oscillations of a segmental continuum and oscillatory kernels 177
3. Oscillatory properties of the vibrations of an everywhere-loaded continuum 180
4. Vibrations of an arbitrarily loaded continuum 191
5. Harmonic oscillations of multiply supported rods 205
6. Oscillatory properties of forced vibrations 210
7. Oscillations of an elastically supported string 220
8. Forced oscillations of a string 223
9. The resolvent of an oscillatory single-pair kernel 225
10. The Sturm–Liouville equations 234

Chapter V. Sign-Definite Matrices 245
1. Basic definitions 245
2. Oscillating systems of vectors 246
3. Markov systems of vectors 258
4. Eigenvalues and eigenvectors of sign-definite matrices 263
5. Approximation of a sign-definite matrix by a strictly sign-definite one 268

Supplement I. A Method of Approximate Calculation of Eigenvalues and Eigenvectors of an Oscillatory Matrix 275

Supplement II. On a Remarkable Problem for a String with Beads and Continued Fractions of Stieltjes 283

Remarks 299

References 305

Index 309