Contents

Preface vii

1	Linear	Vector	Spaces	1
---	--------	--------	--------	---

1.0	Introduction	1

- 1.1 Definition of a linear vector space 6
 - a. Groups 6
 - b. Fields 7
 - c. Linear vector spaces 7
- 1.2 Inner product 8
- 1.3 Convergence and complete spaces 10
 - a. Continuity and uniform continuity of a function 10
 - b. Convergence of a series of functions 11
 - c. Cauchy convergence 12
 - d. Proof of completeness of E_{∞} 13
- 1.4 Linear manifolds and subspaces 16
 - a. Linear independence 16
 - b. Linear manifolds 17
- 1.5 Basis for E_n and E_{∞} 18
- 1.6 Schmidt orthogonalization process 19
- 1.7 Projection theorem 20
- 1.8 Linear functionals 23

2 Operators on Linear Spaces 30

- 2.0 Introduction 30
- 2.1 Matrices and determinants 30
 - a. Definitions of and basic operations with matrices 30
 - b. Determinants 33
 - c. Inverse of a matrix 38
 - d. Direct product of matrices 39

CONTENTS

2.2 Systems of linear algebraic equations 41

a. Test for linear independence 44

41 b. Singular homogeneous systems 42 c. Singular inhomogeneous systems 43

a. Cramer's rule

2.3 Gram determinant 44

	b. Hadamard's inequality 47
2.4	Definition of a linear operator 47
2.5	Representation of a linear operator by a matrix 48
2.6	Effect of a linear transformation 53
	a. Rotation of coordinate axes and of vectors 53
	b. Elements of a matrix in different bases 58
	c. Covariant vectors, contravariant vectors, and the reciprocal
	basis 60
2.7	Inversion of operators 63
	a. Separable operators 63
	b. Identity plus an infinitesimal operator 70
2.8	Adjoint of an operator 74
2.9	
2.10	Completely continuous operators 80
A2.	1 A polynomial expansion for $\Delta(x) = \det \{a_{ij} + \delta_{ij}x\}$ 85
A2.	2 Exponentiation of the two-dimensional infinitesimal spatial
	rotations 87
	3 Proof of Theorem 2.16 88
A2.	4 Proof that $\mathcal{H}=\Re \oplus \mathcal{N}$ for a bounded, self-adjoint linear
	operator defined on $\mathcal{H}=92$
Tab	sle 2.2 Results on the inversion of separable linear operators 93
C	pectral Analysis of Linear Operators 101
5 p	ectral Analysis of Linear Operators 101
2.0	Introduction 101
3.0	Invariant manifolds 102
3.1	
3.3	
3.4	
3.4	a. Minimax principle 114
	b. Simultaneous reduction of two quadratic forms 117
3.5	the state of the second terms of the second te
3.3	rices 120
26	100
3.6	Normal matrices and completeness 122

CONTENTS
3.7 Functions of an operator 123
A3.1 Lagrange undetermined multipliers 125
A3.2 Derivation of extremal properties of Hermitian quadratic
forms using Lagrange undetermined multipliers 127
A3.3 A direct verification of the minimax principle in a real
three-dimensional space 129
•
Complete Sets of Functions 139
4.0 Introduction 130

- 4.0 Introduction
- Criterion for completeness 4.1
 - a. Bessel's inequality 140
 - b. Approximation in the mean
- 4.2 Weierstrass approximation theorem 142
- Examples of complete sets of functions 147
 - a. Fourier series 147
 - b. Legendre polynomials 154
- 4.4 Riemann-Lebesgue lemma 158
- 4.5 Fourier integrals 161
 - a. A heuristic approach
 - b. Fourier integral theorem 162
- A4.1 An alternative proof of the Weierstrass approximation theorem in one variable 167
- A4.2 Two proofs of the Weierstrass approximation theorem in two variables 168
- A4.3 A proof of the Coulomb expansion 172
- A4.4 Derivation of some important relations satisfied by the Legendre polynomials, $P_n(x)$ 173
- A4.5 Derivation of some important relations satisfied by the associated Legendre polynomials, $P_n^m(x)$
- Some relations satisfied by the Legendre polynomials 177 Table 4.1
- A short table of Fourier transformations 178 Table 4.2

5 **Integral Equations** 183

- 5.0 Introduction 183
- Volterra equations 184
 - a. Equations of the first and second kind
 - b. Connection with ordinary differential equations 191

CONTINUE		
5.2	Classification of Fredholm equations 196	
5.3	Successive approximations 197	
5.4	Degenerate and completely continuous kernels 20	
5.5	Fredholm's theorems 203	
5.6	Fredholm's resolvent 204	
5.7	Weak singularities 206	
5.8	Hilbert-Schmidt theory 210	

- A5.1 A derivation of Fubini's method given in Eqs. 5.26 and 5.29 222
- A5.2 A derivation of Fredholm's expression for the resolvent, $\Re(x, y; \lambda)$ 224
- A5.3 A direct proof that $\lim_{n\to\infty}\sum_{j=0}^{n} \alpha_{jk} \langle \varphi_{l} | \mathcal{R}_{n}(\lambda) | \varphi_{j} \rangle = 0$ 228
- A5.4 An equivalent definition of completely continuous operators in terms of strong convergence 229
- A5.5 Proof that every bounded sequence of vectors in a Hilbert space has a weakly convergent subsequence 230

6 Calculus of Variations 236

- 6.0 Introduction 236
- 6.1 Extremum of an integral with fixed end points 237
 a. Euler-Lagrange conditions 237
 b. Several dependent variables 245
- 6.2 Variable end points 245
- 6.3 Isoperimetric problems 246
- 6.4 Lagrangian field theories 249
- 6.5 Noether's theorem 251

7 Complex Variables 261

- 7.0 Introduction 261
- 7.1 Definition of a holomorphic function 262
- 7.2 Cauchy-Riemann conditions 264
- 7.3 Cauchy's theorems 266
 - a. Cauchy-Goursat theorem 267
 - b. Cauchy's integral formula 272

	integral along a station car 507
d.	Dispersion representation 311
e.	Principal-value integrals 313
7.10 Si	ingular integral equations 318
7.11 A	nalytic continuation 322
	Power series 324
	Poisson integral formula 330
	Dirichlet problem and conformal mapping 332
	Schwarz principle of reflection 339
	ntegral representations 341
	$\Gamma(z)$ —the gamma function 341
	. Method of steepest descent 346
	Analytic properties of Fourier integrals 356
7.13 C	classical functions 361
a	F(a, b $ c z$)—the hypergeometric function 361
	. $P_n(z)$ —the Legendre functions 373
	$J_n(z)$ —the Bessel function 380
A7.1	The solution to a dispersion-theory problem 394
A7.2	A justification for the interchange of a double infinite sum
	when $\alpha_{nm} \ge 0$, $\forall n, m = 397$
A7.3	Recursion and orthogonality relations for the Jacobi poly-
	nomials, $P_n^{(\alpha,\beta)}(x)$ 397
A7.4	Ellipse of convergence of the Legendre polynomial
	expansion 403
A7.5	Proof of the convergence of a polynomial expansion by
	means of conformal mapping 406
A7.6	Confluent hypergeometric function 410
Table '	7.1 Elementary properties of some special functions 415

Taylor series 274

Laurent series 283 7.8 Theory of residues 286

7.9 Multiple-valued functions

b. Riemann sheets

Zeros and singularities 278

a. Rational algebraic integrands 291 b. Trigonometric integrands 294

a. Branch points and branch cuts 298

c. Integral along a branch cut. 307

304

Liouville's theorem 282

7.4 7.5

7.6

7.7

8

Second-Order Linear **Ordinary Differential Equations** 431 and Green's Functions

8.0	Introduction	431
O.V	minounchon	サンエ

- 8.1 Ideal functions 433
 - a. Test functions 433
 - b. Linear functionals
 - c. Derivatives of ideal functions 435
 - d. Ideal limits 437
 - e. Derivatives of discontinuous functions 439
- Existence and uniqueness theorems for homogeneous linear 8.2 second-order ordinary differential equations
 - a. Ordinary points 443
 - b. Singular points
- 8.3 Sturm-Liouville problem for discrete eigenvalues 457
- 8.4 Linear differential operators 466
 - a. Domain of a linear differential operator
 - b. Adjoint and hermitian linear differential operators 467
 - c. Self-adjoint second-order linear differential operators 468
- 8.5 Green's functions
 - a. Inverse of a differential operator 472
 - b. An existence theorem
- 8.6 Various boundary conditions 475
 - a. Unmixed homogeneous boundary conditions
 - b. Unmixed inhomogeneous boundary conditions 477
 - c. Case of nontrivial eigenfunction with unmixed boundary conditions 478
 - d. The general case
- 8.7 Eigenfunction expansion of the Green's function
- A heuristic discussion of Green's functions 485 8.8
- Asymptotic behavior of the solutions to a linear differential 8.9 equation 487
- 8.10 The continuous spectrum
- 8.11 Physical applications of Green's functions 498
 - a. An example
 - b. The scalar Helmholtz equation 505
 - c. The Schrödinger equation
 - d. The scalar wave equation
 - e. The diffusion or heat equation

- A8.1 Proof of the completeness of the Sturm-Liouville eigenfunctions via the Hilbert-Schmidt theorem 519
- A8.2 General condition for a second-order linear ordinary differential operator to be self-adjoint 521
- An orthonormal basis for $\mathcal{L}_2(-\infty, \infty)$ 524 A8.3
- Explicit proof that $\langle \psi(k) | \psi(k') \rangle = \langle \phi(k) | \phi(k') \rangle$ for the con-A8.4 tinuous spectrum 525
- Table 8.1 Orthogonal polynomial solutions to the Sturm-Liouville equation 526
- The Sturm-Liouville differential equation subject to Table 8.2 self-adjoint boundary conditions
- Green's functions in the infinite spatial domain for some Table 8.3 partial differential operators 529

Group Theory 538

- 9.0 Introduction 538
- 9.1 Definitions and elementary theorems 539
 - a. Definition of an abstract group and examples 539
 - b. Cayley's theorem 542
 - c. Lagrange's theorem 542
 - d. Cosets, conjugate classes, and invariant subgroups
 - e. Homomorphism 550
- Linear representations of groups 550 9.2
- Unitary representations 554 9.3
- 9.4 Irreducible representations
 - a. Schur's lemma 555
 - b. Completeness 559
- Definitions of continuous groups and of Lie groups 9.5
- Examples of Lie groups 572 9.6
 - a. Orthogonal group in n dimensions, O(n) 572
 - b. Unitary group in n dimensions, U(n) 572
 - c. Special (or unimodular) unitary group in n dimensions, SU(n) 573
 - d. Complex orthogonal group in four dimensions, M(4)573
 - e. Complex unimodular group in two dimensions, C(2)573
- Infinitesimal generators and group parameters 9.7 574
- 9.8 Structure constants 577
- Casimir operators and the rank of a group
- 9.10 Homomorphism between the proper rotation group $O^+(3)$ and 586 SU(2)

9.11 Irreducible representations of SU(2) 590
a. Spinor representations 590
b. The rotation matrices 593
c. Representations in the space of spherical harmonics 595
9.12 Algebra of the angular momentum operators 596
a. Spectra of J^2 and of J_3 596
b. Rotation of angular momentum eigenfunctions 599
9.13 Coupling of two angular momenta 603
a. Product basis and the coupled representation 603
b. Clebesch-Gordan theorem and selection rules 608
9.14 Integration of rotation group parameters 609
a. Orthogonality of the rotation matrices 611
b. Completeness of the rotation matrices 615
9.15 Tensor operators and the Wigner-Eckart theorem 616
A9.1 A calculation of the $O^+(3)$ invariant integration density

function in terms of the class parameter 618 A9.2 A direct calculation of the invariant integration density

Appendix I Elementary Real Analysis 627

function for $O^+(3)$ 620

Appendix II Lebesgue Integration and Functional Analysis 637

Symbols and Notations 640

Bibliography 641

Index 645