CONTENTS

CHAPTER I THE THEORY OF ANALYTIC FUNCTIONS

1

- 1. Elementary Notions of Set Theory and Analysis, 1
 - 1.1 Sets, 1
 - 1.2 Some Notations of Set Theory, 1
 - 1.3 Sets of Geometrical Points, 4
 - 1.4 The Complex Plane, 5
 - 1.5 Functions, 8
- 2. Functions of a Complex Argument, 11
- 3. The Differential Calculus of Functions of a Complex Variable, 12
- 4. The Cauchy-Riemann Conditions, 14
- 5. The Integral Calculus of Functions of a Complex Variable, 18
- 6. The Darboux Inequality, 21
- 7. Some Definitions, 21
- 8. Examples of Analytic Functions, 22
 - 8.1 Polynomials, 22
 - 8.2 Power Series, 23
 - 8.3 Exponential and Related Functions, 23
- 9. Conformal Transformations, 25
 - 9.1 Conformal Mapping, 25
 - 9.2 Homographic Transformations, 27
 - 9.3 Change of Integration Variable, 29
- 10. A Simple Application of Conformal Mapping, 30
- 11. The Cauchy Theorem, 33
- 12. Cauchy's Integral Representation, 37
- 13. The Derivatives of an Analytic Function, 39
- 14. Local Behavior of an Analytic Function, 41
- 15. The Cauchy-Liouville Theorem, 42
- 16. The Theorem of Morera, 43
- 17. Manipulations with Series of Analytic Functions, 44
- 18. The Taylor Series, 45
- 19. Poisson's Integral Representation, 47
- 20. The Laurent Series, 48
- 21. Zeros and Isolated Singular Points of Analytic Functions, 50
 - 21.1 Zeros, 50
 - 21.2 Isolated Singular Points, 51
- 22. The Calculus of Residues, 53

vi CONTENTS

/1	CONTENTS	
	22.1 Theorem of Residues, 53	
	22.2 Evaluation of Integrals, 56	
	23. The Principal Value of an Integral, 60	
	24. Multivalued Functions; Riemann Surfaces, 65	
	24.1 Preliminaries, 65	rface 66
	24.2 The Logarithmic Function and Its Riemann Su 24.3 The Functions $f(z) = z^{1/n}$ and Their Riemann	Surfaces, 70
	24.4 The Function $f(z) = (z^2 - 1)^{1/2}$ and Its Rien	nann Surface, 71
	24.5 Concluding Remarks, 73	•
	25. Example of the Evaluation of an Integral Involving a M	Multivalued Function, 74
	26. Analytic Continuation, 76	
	27. The Schwarz Reflection Principle, 80	
	28. Dispersion Relations, 82	
	29. Meromorphic Functions, 84	
	29.1 The Mittag-Leffler Expansion, 84	
	29.2 A Theorem on Meromorphic Functions, 85	
	30. The Fundamental Theorem of Algebra, 86	sions 97
	31. The Method of Steepest Descent; Asymptotic Expar	isiums, or
	32. The Gamma Function, 9433. Functions of Several Complex Variables. Analytic	Completion, 98
CHAPT	TER II LINEAR VECTOR SPACES	103
	1. Introduction, 103	
	2. Definition of a Linear Vector Space, 103	
	3. The Scalar Product, 106	_
	4. Dual Vectors and the Cauchy-Schwarz Inequality, 10	6
	5. Real and Complex Vector Spaces, 1086. Metric Spaces, 109	
	7. Linear Operators, 111	
	8. The Algebra of Linear Operators, 113	
	9. Some Special Operators, 114	
	10. Linear Independence of Vectors, 118	
	11. Eigenvalues and Eigenvectors, 119	
	11.1 Ordinary Eigenvectors, 11911.2 Generalized Eigenvectors, 121	
	12. Orthogonalization Theorem, 124	
	13. N-Dimensional Vector Space, 126	
	13.1 Preliminaries, 126	
	13.2 Representations, 127	
	13.3 The Representation of a Linear Operator in a	an N-Dimensional Space
	128	

14. Matrix Algebra, 12915. The Inverse of a Matrix, 132

vii CONTENTS

- 16. Change of Basis in an N-Dimensional Space, 134
- 17. Scalars and Tensors, 135
- 18. Orthogonal Bases and Some Special Matrices, 139
- 19. Introduction to Tensor Calculus, 143
 - 19.1 Tensors in a Real Vector Space, 143
 - 19.2 Tensor Functions, 148
 - 19.3 Rotations, 150
 - 19.4 Vector Analysis in a Three-dimensional Real Space, 152
- 20. Invariant Subspaces, 154
- 21. The Characteristic Equation and the Hamilton-Cayley Theorem, 158
- 22. The Decomposition of an N-Dimensional Space, 159
- 23. The Canonical Form of a Matrix, 162
- 24. Hermitian Matrices and Quadratic Forms, 170
 - 24.1 Diagonalization of Hermitian Matrices, 170
 - 24.2 Quadratic Forms, 175
 - 24.3 Simultaneous Diagonalization of Two Hermitian Matrices, 177

CHAPTER III FUNCTION SPACE, ORTHOGONAL POLYNOMIALS, AND FOURIER ANALYSIS

179

- 1. Introduction, 179
- 2. Space of Continuous Functions, 179
- 3. Metric Properties of the Space of Continuous Functions, 181
- 4. Elementary Introduction to the Lebesgue Integral, 184
- 5. The Riesz-Fischer Theorem, 189
- 6. Expansions in Orthogonal Functions, 191
- 7. Hilbert Space, 196
- 8. The Generalization of the Notion of a Basis, 197
- 9. The Weierstrass Theorem, 199
- 10. The Classical Orthogonal Polynomials, 203
 - 10.1 Introductory Remarks, 203
 - 10.2 The Generalized Rodriguez Formula, 203
 - 10.3 Classification of the Classical Polynomials, 205
 - 10.4 The Recurrence Relations, 208
 - 10.5 Differential Equations Satisfied by the Classical Polynomials, 209
 - 10.6 The Classical Polynomials, 211
- 11. Trigonometrical Series, 216
 - 11.1 An Orthonormal Basis in $L_1^2(-\pi, \pi)$, 216
 - 11.2 The Convergence Problem, 217
- 12. The Fourier Transform, 223
- 13. An Introduction to the Theory of Generalized Functions, 225
 - 13.1 Preliminaries, 225
 - 13.2 Definition of a Generalized Function, 227
 - 13.3 Handling Generalized Functions, 230

	CONTENTS						
13.4	The	Fourier	Transform	of a	Generalized	Function,	232

14. Linear Operators in Infinite-Dimensional Spaces, 237

14.3 The Norm of a Linear Operator. Bounded Operators, 239

13.5 The Dirac δ Function, 235

14.4 Sequences of Operators, 241

14.1 Introduction, 23714.2 Compact Sets, 238

viii

 14.5 Completely Continuous Linear Operators, 241 14.6 The Fundamental Theorem on Completely Continuous Hermitian Operators, 244
14.7 A Convenient Notation, 24914.8 Integral and Differential Operators, 251
CHAPTER IV DIFFERENTIAL EQUATIONS 257
PART I Ordinary Differential Equations, 257
 Introduction, 257 Second-Order Differential Equations; Preliminaries, 260 The Transition from Linear Algebraic Systems to Linear Differential Equations—Difference Equations, 264 Generalized Green's Identity, 266 Green's Identity and Adjoint Boundary Conditions, 268 Second-Order Self-Adjoint Operators, 270 Green's Functions, 273 Properties of Green's Functions, 274 Construction and Uniqueness of Green's Functions, 277 Generalized Green's Function, 284 Second-Order Equations with Inhomogeneous Boundary Conditions, 285 The Sturm-Liouville Problem, 286 Eigenfunction Expansion of Green's Functions, 288
 14. Series Solutions of Linear Differential Equations of the Second Order that Depend on a Complex Variable, 291 14.1 Introduction, 291 14.2 Classification of Singularities, 291 14.3 Existence and Uniqueness of the Solution of a Differential Equation in the Neighborhood of an Ordinary Point, 292 14.4 Solution of a Differential Equation in a Neighborhood of a Regular Singular Point, 296
 15. Solution of Differential Equations Using the Method of Integral Representations, 301 15.1 General Theory, 301 15.2 Kernels of Integral Representations, 303
16. Fuchsian Equations with Three Regular Singular Points, 30317. The Hypergeometric Function, 30617.1 Solutions of the Hypergeometric Equation, 306

CONTENTS ix

- 17.2 Integral Representations for the Hypergeometric Function, 308
- 17.3 Some Further Relations Between Hypergeometric Functions, 312
- 18. Functions Related to the Hypergeometric Function, 314
 - 18.1 The Jacobi Functions, 314
 - 18.2 The Gegenbauer Function, 315
 - 18.3 The Legendre Functions, 316
- 19. The Confluent Hypergeometric Function, 316
- 20. Functions Related to the Confluent Hypergeometric Function, 321
 - 20.1 Parabolic Cylinder Functions; Hermite and Laguerre Polynomials, 321
 - 20.2 The Error Function, 322
 - 20.3 Bessel Functions, 322

PART II Introduction to Partial Differential Equations, 333

- 21. Preliminaries, 333
- 22. The Cauchy-Kovalevska Theorem, 333
- 23. Classification of Second-Order Quasilinear Equations, 334
- 24. Characteristics, 336
- 25. Boundary Conditions and Types of Equations, 341
 - 25.1 One-dimensional Wave Equation, 341
 - 25.2 The One-dimensional Diffusion Equation, 344
 - 25.3 The Two-dimensional Laplace Equation, 345
- 26. Multidimensional Fourier Transforms and δ Function, 346
- 27. Green's Functions for Partial Differential Equations, 348
- 28. The Singular Part of the Green's Function for Partial Differential Equations with Constant Coefficients, 351
 - 28.1 The General Method, 351
 - 28.2 An Elliptic Equation: Poisson's Equation, 351
 - 28.3 A Parabolic Equation: The Diffusion Equation, 352
 - 28.4 A Hyperbolic Equation: The Time-dependent Wave Equation, 353
- 29. Some Uniqueness Theorems, 355
 - 29.1 Introduction, 355
 - 29.2 The Dirichlet and Neumann Problems for the Three-dimensional Laplace Equation, 355
 - 29.3 The One-dimensional Diffusion Equation, 358
 - 29.4 The Initial Value Problem for the Wave Equation, 360
- 30. The Method of Images, 362
- 31. The Method of Separation of Variables, 364
 - 31.1 Introduction, 364
 - 31.2 The Three-dimensional Laplace Equation in Spherical Coordinates, 365
 - 31.3 Associated Legendre Functions and Spherical Harmonics, 366
 - 31.4 The General Factorized Solution of the Laplace Equation in Spherical Coordinates, 371
 - 31.5 General Solution of Laplace's Equation with Dirichlet Boundary Conditions on a Sphere, 372

BIBLIOGRAPHY 375