Contents†

Preface		Хi
Cha	apter 1 The Construction of Models	
1.1	Introduction The Need for Models; Simplification of the Problem; Microscopic and Macroscopic Approaches; Ideal and Nonideal Gases; Systems of Interacting Particles; Examples of the Microscopic Approach; Examples of the Macroscopic Approach; Other Applications of Models	1
1.2	The Atomic Nucleus The Need for Nuclear Models; The Liquid-Drop Model; The Shell Model; Compound Nucleus and Optical Models; Use of Conflicting Simple Models	8
1.3	The Quark Model of Elementary Particles Definition of Elementary Particles; Classification of Particles; *Symmetry Groupings; The Quark Model; Modifications of the Quark Model; Experimental Confirmation and Outstanding Problems	13
1.4	Elementary Excitation in Solids The Free-Electron Model; Normal Coordinates; Quasi-particles; The Successes and Failures of the Free-Electron Model; *Magnetic Properties of the Electron Gas; Different Types of Elementary Excitations in Solids	19
1.5	Steady-State Space-Charge-Limited Currents in Insulators Description of the System; Construction and Analysis of an Idealized Model; Simplification of the Model; Solutions for Extreme Cases	27
1.6	Boundary Layer Theory in Hydrodynamics The Equations of Motion for a Fluid; The Flow of Fluid past a Solid Body; Simplification of the Hydrodynamic Equations	31
Ch	apter 2 Dimensional Analysis	
2.1	Introduction Fundamental and Derived Units; Derivation of Formulas; Nonlinear Heat Conduction; Dimensionless Equations; Hydrodynamic Modeling; Phase Transitions; The Ising Model; Scaling Theory	36
2.2	The Derivation of Formulas by Dimensional Analysis The II Theorem; Planetary Motion; Electrical Units; Space-Charge- Limited Currents; Vector Lengths; The Thermal Conductivity of a Gas	52
2.3		59
2.4		64

viii	i	Content
2.5	Modern Theory of Critical Phenomena The Renormalization Group; *An Application of the Renormalization Group Theory	72
	Problems	80
Ch	apter 3 Symmetry	
3.1	Introduction Classical Mechanics; Frames of Reference and Relativity; Quantum Mechanics; *Classical Electrodynamics; Elementary Particles; Molecular Vibrations; Symmetry of Crystal Structures; Symmetry of the Properties of Crystals; *The Symmetry of Kinetic Coefficients— Onsager's Principle; Order-Disorder Phase Transitions	84
3.2	Conservation Laws in Quantum Mechanics Quantum-Mechanical Formulation of Conservation Laws; The Conservation of Energy, Momentum, and Angular Momentum; Parity; Time-Reversal Symmetry in Classical Physics; Time-Reversal Symmetry and Irreversibility; Time-Reversal Symmetry in Quantum Mechanics; Indistinguishable Particles; Gauge Invariance and Charge Conservation; Charge Conjugation	109
3.3	Symmetry and the Microscopic Properties of Systems The Symmetry of Eigenfunctions; Matrix Elements and Selection Rules; *Irreducible Representations of Groups; One-Dimensional Representations; The Translational Symmetry of Crystals; Selection Rules for Crystals; *Irreducible Representations of a Crystal's Space Group; *Structural Phase Transitions in Crystals; *Integrals over the First Brillouin Zone	124
3.4		139
	Problems	148
Ch	apter 4 Analytical and Related Properties	
4.1	Introduction *Phase Transition Points; Singularities and Analytical Relationships; Singularities in Quantum Mechanics; The Dielectric Constant of Model Systems; Dispersion Relations; Sum Rules; Causality and Time- Reversal Symmetry; Fluctuations and Dissipation	152
4.2	Analytic Properties of the Scattering Matrix Scattering Amplitudes and the S-Matrix; *Analytical Properties of the S-Matrix; Scattering by a Square Well Potential; *Dispersion Relations	167
4.3	Dispersion Relations for Macroscopic Systems Convergence Conditions; Applications of Dispersion Relations; Quantum-Mechanical Approach; Calculation of the Dielectric Constant; Oscillator Strengths and Quantum-Mechanical Sum Rules; Additional Sum Rules; The Physical Meaning of Sum Rules and Dispersion Relations.	172
4.4	The Fluctuation-Dissipation Theorem Fluctuations of Extensive Variables; Time Correlation Functions; The Fluctuation-Dissipation Theorem; Application of the Fluctuation-	186

Contents	
Dissipation Theorem: Energy Density of Radiation Field; *Time- Dependent Correlation Functions and Transport Coefficients; The Electrical Conductivity; The Electical Susceptibility of a Dielectric	
Medium Problems	197
Chapter 5 The Method of the Small Parameter	
5.1 Introduction A Typical Problem; Perturbation Theory—The Series Expansion Technique; Solution for a Problem with Two Boundary Conditions at the Same Point; Renormalization Techniques; Eigenvalue Problems; Rayleigh-Schrödinger Perturbation Theory; Mathieu's Equation; Brillouin-Wigner Perturbation Theory; Choice of the Small Parameter; Density Expansion of Transport Coefficients; Low-Density Systems of Charged Particles; The High-Density Electron Gas; Breakdown of Perturbation Theory; Decrease of the Order of a Differential Equation	200
5.2 Integral Equation Formulations of Perturbation Theory Integral Equations; Green's Functions; Brillouin-Wigner and Rayleigh-Schrödinger Perturbation Theory; *Convergence of the Perturbation Series; Scattering Theory—The First Born Approximation; Dyson's Equation	223
5.3 Choice of the Small Parameter *Quantum-Mechanical Description of a System of Nuclei and Electrons; Degenerate Systems with Two Perturbations; *Flexible Choice of the Perturbation	232
5.4 Difficulties in the Use of the Small Parameter A Small Parameter Multiplying the Highest Derivative; *The Effective Mass Approximation; *Magnetic Interactions of Nuclei through Conduction Electrons	241
Problems	246
Chapter 6 Epilogue—Example of the Application of the Above Methods to a Problem in Nonlinear Optics	
6.1 Introduction 6.2 Model System Analysis of the Model; The Model's Limitations	250 251
6.3 Nonlinear Response Functions; Free Energy and Intrinsic Symmetry; Second Harmonic Generation in KDP	255
6.4 Use of Perturbation Theory Preparation of the Problem for Perturbation Theory; Application of Perturbation Theory; Conclusions	258
References	265
Index	2 72