Contents | 0 | How to use this book. Notation | | | | | |---|--|--|----------|--|--| | | 1 | Table numbering and general cross-referencing | - | | | | | | Cross-references on left margins of displayed lines | - | | | | | 9 | Literature references Symbols used | 4 | | | | | 2 | Symbols used | 4 | | | | | | Part 1. Introduction to the tables | | | | | 1 | Int | roduction | , | | | | | 1 | Comparison with other tables | 7 | | | | | 2 | Construction of the present tables | , | | | | 2 | Basic group theory: definitions and formulae | | | | | | | 1 | Basic group definitions | ç | | | | | | Group properties (postulates) | , | | | | | | Group presentations | , | | | | | | Group definitions | 10 | | | | | 0 | Group products | 10
10 | | | | | 2 | Operators Configuration-space operators | 10 | | | | | | Function-space operators | 11 | | | | | 3 | Vector (ordinary) representations | 11 | | | | | J | Definition and properties | 11 | | | | | | Bases of the representations; representations | 12 | | | | | | Similarity and unitary transformation of representations | 13 | | | | | | Characters | 13 | | | | | | Irreducible representations and their properties | 13 | | | | | 4 | Projection operators | 14 | | | | | | Properties of the projection operators | 14 | | | | | | Projection operator over a representation | 14 | | | | | 5 | Representation reduction | 14 | | | | | | Notation used in this book for the indices | 15 | | | | | | Representation reduction by projection operators | 15 | | | | | | Representation reduction by the internal method | 16 | | | | | 6 | Direct products | 16 | | | | | | Representations of direct-product groups | 16 | | | | | | Direct product of two representations of the same group | 16 | | | | | - | Symmetrized and antisymmetrized products of the same representation
Clebsch–Gordan coefficients | 17
17 | | | | | 7 | Notation | 17 | | | | | | Definition of the Clebsch–Gordan coefficients | 17 | | | | | | Notation for the Clebsch–Gordan matrix | 17 | | | | | | The Clebsch–Gordan matrix | 18 | | | | | 8 | Matrix elements and selection rules | 18 | | | | | 9 | The Wigner–Eckart theorem | 19 | | | | | 10 | Subduced and induced representations | 19 | | | | | | Subduced representations (descent of symmetry) | 19 | | | | | | Induced representations | 19 | | | | | | Bibliographical note | 19 | | | | | | | | | | | 3 | Par | ametrization of symmetry operations | 20 | |---|---------------|---|-----------------| | | 1 | Axes and general definitions | 20 | | | 2 | Parametrization of proper rotations | 20 | | | | Euler angles | 20 | | | | Angle and axis of rotation | $\frac{20}{21}$ | | | | Rules for choosing a set of poles as used in the tables
The parameters ϕ , \mathbf{n} , and $\phi \mathbf{n}$ | $\frac{21}{21}$ | | | | Quaternion (Euler–Rodrigues) parameters λ , Λ | 22 | | | | Cayley–Klein parameters | 22 | | | 3 | Parametrization of improper operations | 22 | | | 4 | Parametrization of double-group operations | 23 | | | 5 | Calculation of the Euler angles | 23 | | | 6 | Calculation of the angle and axis of rotation from the Euler angles Bibliographical note | $\frac{24}{24}$ | | 4 | Svr | nmetry operations: notation and properties | 25 | | • | 1 | Key to the symbols for symmetry operations | 25 | | | | Basic notation | 25 | | | | Embellishments, subscripts, and superscripts | 25 | | | 2 | Special rotations and rotoreflections | 26 | | | 3 | Commutation of symmetry operations | 26 | | | 4 | Special relations for symmetry operations | 27 | | 5 | No | tation for point groups, single and double | 28 | | | 1 | Cyclic, dihedral, and related groups | 28 | | | 2 | Cubic groups | 28
29 | | | $\frac{3}{4}$ | Icosahedral groups Double groups | 29 | | | 5 | The Hermann–Mauguin or international notation | 29 | | | Ū | Bibliographical note | 29 | | 6 | De | rivation of the proper and improper point groups | 30 | | | 1 | Definitions for proper point groups | 30 | | | 2 | Derivation of the proper point groups | 31 | | | 3 | Description of the proper point groups | $\frac{32}{32}$ | | | | Cyclic groups \mathbf{C}_n (order $n \geq 2$)
Dihedral groups \mathbf{D}_n (order $2n, n \geq 2$) | 32 | | | | Tetrahedral group \mathbf{T} (order $2n, n \geq 2$) | 32 | | | | Octahedral group O (order 24) | 32 | | | | Icosahedral group I (order 60) | 33 | | | 4 | Improper groups: general structure | 33 | | | 5 | Improper groups with inversion | 33 | | | | Generated from cyclic groups \mathbf{C}_n | 33 | | | | Generated from dihedral groups \mathbf{D}_n | 34 | | | | Generated from the cubic groups O , T
Generated from the icosahedral group I | $\frac{34}{34}$ | | | 6 | Improper groups without inversion | 34 | | | U | Generated from cyclic groups \mathbf{C}_n | 34 | | | | Generated from dihedral groups \mathbf{D}_n | 34 | | | | Generated from the cubic groups O, T | 35 | | | | Generated from the icosahedral group ${f I}$ | 35 | | | 7 | Summary. The point-group structure | 35 | | 7 | ъ. | Bibliographical note | 36 | | 7 | | rect product, semidirect product and coset expansion forms of the point groups | 37 | | 8 | | e crystallographic point groups | 40 | | 9 | | oup chains Definitions and structure of the tables | 41 | | | 1 | Definitions and structure of the tables
Possible difficulties in group chains, for $G \supset H$ | 41
41 | | | | Construction of the tables | 41 | | | | | | | | Description of the group-chain graphs An index of the groups in the graphs Examples The graphs | 42
42
44
44 | |----|---|--| | 10 | Double groups. Spinor and projective representations 1 The double group Definitions Class structure (Opechowski's theorem) Irreducible representations 2 Projective representations Motivation Definitions Properties Bibliographical note | 51
51
51
51
52
52
52
52
53
53 | | 11 | The matrices of SU(2) and SU'(2) 1 Definitions 2 Form of the matrices 3 Relation between SU(2) and SU'(2) to the rotation group Definitions Relation between SO(3) and SU(2) Relation between O(3), SU(2), and SU'(2) The bilateral-binary rotation matrices The Pauli matrices Bibliographical note | 54
54
54
54
54
54
54
55
55 | | 12 | The continuous groups. Rotations, their matrices, and the irreducible representations of O(3) 1 The continuous groups 2 Action of a rotation on a vector 3 Rotation matrices Notation The matrices 4 The irreducible representations of O(3) Basis and form of the representation Improper rotations Special cases The characters Bibliographical note | 56
56
56
56
56
57
57
58
58
58 | | 13 | Bases: spherical harmonics, spinors, cartesian tensors, and the functions s, p, d, f 1 Integral angular momentum: the spherical harmonics 2 Half-integral angular momentum: spinors Higher order spinors: spin harmonics 3 Relation between the bases of SO(3) and those of O(3) 4 Cartesian tensors 5 The s, p, d, and f functions Bibliographical note | 59
59
59
60
60
61
62
62 | | 14 | Notation for the irreducible representations 1 The basic symbols 2 Embellishments 3 Lower-case symbols | 63
63
63
64 | | 15 | Stereographic projections and three-dimensional drawings of point groups 1 Key to the symbols for the stereographic projections 2 Key to the symbols for the three-dimensional drawings Bibliographical note | 65
65
66
66 | | 16 | Но | v to use the tables | 67 | |----|--------|---|----------| | | | General instructions | 67 | | | | Description of the tables | 67 | | | 0 | Subgroup elements | 68 | | | 1 | Parameters | 68 | | | | Notation for the headers of T n.1 | 68 | | | _ | Instructions | 68 | | | 2 | Multiplication table | 69 | | | | Notation for the headers of T n.2 | 69
69 | | | | Instructions For wells, Obtantian of the multiplication table for $\widetilde{\mathbf{p}}_{i}$ | 69 | | | 9 | Example. Obtention of the multiplication table for $\widetilde{\mathbf{D}}_2$ | 70 | | | 3 | Factor table Notation for the headers of T n.3 | 70 | | | | Instructions | 70 | | | 4 | Character table | 71 | | | - | Obtention of the character table for the double group | 71 | | | | Example. Obtention of the character table for $\widetilde{\mathbf{D}}_2$ | 71 | | | | Time reversal: column headed ' τ ' in the tables | 71 | | | 5 | Cartesian tensors. The s, p, d , and f functions | 72 | | | O | The cartesian tensors (up to and including rank 3) | 72 | | | | The s, p, d , and f functions | 72 | | | | Example. Cartesian tensors and s , p , d , and f functions for \mathbf{D}_8 | 73 | | | 6 | Symmetrized bases | 74 | | | _ | General notes | 74 | | | | The cyclic, dihedral, and related groups | 74 | | | | The cubic and icosahedral groups | 75 | | | 7 | Matrix representations | 77 | | | | Notation for the headers of T n.7, and for its first row | 77 | | | | Vector representations | 78 | | | | Double-group representations | 78 | | | | Projective representations (full table, including vector representations) | 79 | | | | Examples. Representations of \mathbf{D}_3 | 79 | | | | Icosahedral group I | 80 | | | 8 | Direct product of representations | 81 | | | | Notation for the headers of T n.8, and for its first column | 81 | | | | Use of the table | 81 | | | 0 | Example. Direct products for representations of \mathbf{D}_{8h} | 81
82 | | | 9 | Subduction (descent of symmetry) Example. Subgroups \mathbf{D}_2 of \mathbf{O} | 82 | | | 10 | Subduction from O(3) | 82 | | | 10 | Example. Subduction from $O(3)$ to C_{2h} | 83 | | | 11 | Clebsch–Gordan coefficients | 83 | | | 11 | Notation for the headers of T n.11 | 83 | | | | Notation required to use the tables | 84 | | | | Description of the tables | 84 | | | | Example. Coupling of the representations $E_{1/2}$ and $E_{5/2}$ of \mathbf{D}_6 | 84 | | | | Bibliographical note | 85 | | | _ | | | | 17 | Pro | blems | 86 | | | | Cross-references | 86 | | | 1 | Multiplication rules | 86 | | | 2 | The regular representation | 87 | | | 3 | Transformation of the components of a vector | 87 | | | 4 | A rotation acting on the function space | 88 | | | 5 | The faithful (Jones) representation | 88 | | | 6
7 | Hybrids: general form Reduction of a representation by the internal method | 88 | | | 8 | Cubic hybrids | 89
89 | | | O | Cuoto nj otius | 09 | | 9 | Eig | ght equivalent hybrid | ds not requiring f orbitals | | | 9 | 90 | | |---|---|------------------------------|-------------------------------|----------------|-------------------------|-----|-----------------|--| | 10 | Hy | brids: their full exp | ression | | | 9 | 91 | | | 11 | Sy | mmetrized molecular | r orbitals | | | 9 | 91 | | | | v | The symmetry grou | | | | 9 | 91 | | | | How to find the irreducible representations that appear in the molecular orbitals | | | | | | | | | | | | | or call by | VA | | $\frac{92}{92}$ | | | | Use of the projection operator The symmetrical functions (bases) | | | | | | | | | The symmetrized functions (bases) The full symmetry of the molecular orbitals in \mathbf{D}_{6h} | | | | | | | | | | 19 | C | | r orbitals: projecting over t | | agantationa | | 93
93 | | | 12 | | | | пе терг | esentations | | 93
94 | | | 13 | | transition-metal com | - | | | | 95 | | | 14 | | | perator on a direct product | , | | | | | | 15 | | ection rules | | | | | 95 | | | 16 | | e form of the secula | r determinant | | | | 96 | | | 17 | | rmal coordinates | | | | | 96 | | | 18 | | | ctivity of normal vibrations | | | | 98 | | | 19 | | ertones and combina | _ | | | | 98 | | | 20 | | rmal vibrations in n | nethane | | | | 99 | | | 21 | Ja | hn-Teller effect | | | | | 00 | | | 22 | Ele | ectronic states in an | octahedral complex | | | 10 | 00 | | | 23 | Sp | litting of a doublet i | n a magnetic field | | | 10 | 00 | | | 24 | Su | bduction (descent of | symmetry) | | | 10 | 00 | | | 25 | Do | ouble group: term sp | litting | | | 10 | 00 | | | | | Double-group meth | od | | | 10 | 01 | | | | | Projective-represent | tation method | | | 10 | 02 | | | 26 | A | crystal field | | | | 10 | 02 | | | 27 | | me reversal | | | | 10 | 03 | | | 28 | | ctor coupling | | | | 10 | 03 | Part 2. The tal | oles | | | | | | | | | | | | | | | | The pi | oper | cyclic groups \mathbf{C}_n | | | | | 07 | | | \mathbf{r} | 1 | \mathbf{C}_1 | 108 | \mathbf{T} 2 | \mathbf{C}_2 | 110 | | | | \mathbf{r} | 3 | \mathbf{C}_3 | 112 | \mathbf{T} 4 | $\mathbf{C_4}$ | 114 | | | | \mathbf{r} | 5 | \mathbf{C}_{5}° | 116 | T 6 | \mathbf{C}_6 | 119 | | | | \mathbf{I} | | - | 122 | T 8 | \mathbf{C}_8 | 125 | | | | \mathbf{T} | | $\dot{\mathbf{C}_9}$ | 128 | T 10 | \mathbf{C}_{10} | 132 | | | | | | _ | and C | | | 1 | 37 | | | | | per cyclic groups (| | T 12 | C | 140 | 91 | | | 1 | 11 | \mathbf{C}_i | 138 | 1 12 | C_s | | | | | The in | npro | per cyclic groups S | \mathbf{S}_n | | | 1 | 43 | | | | 13 | | 144 | T 14 | \mathbf{S}_6 | 146 | | | | | 15 | S_8 | 149 | T 16 | \mathbf{S}_{10} | 152 | | | | | 17 | \mathbf{S}_{12} | 156 | T 18 | S_{14} | 161 | | | | | 19 | \mathbf{S}_{16} | 166 | T 20 | \mathbf{S}_{18} | 173 | | | | | 21 | | 181 | | • • | | | | | | | \mathbf{S}_{20} | 101 | | | 4 | ^- | | | | | al groups \mathbf{D}_n | | 77 1 00 | D | | 93 | | | | 22 | \mathbf{D}_2 | 194 | T 23 | \mathbf{D}_3 | 196 | | | | Γ | 24 | \mathbf{D}_4 | 199 | T 25 | \mathbf{D}_5 | 203 | | | | | 26 | \mathbf{D}_6 | 207 | T 27 | \mathbf{D}_7 | 213 | | | | \mathbf{r} | 28 | \mathbf{D}_8 | 220 | T 29 | \mathbf{D}_9 | 227 | | | | Γ | 30 | \mathbf{D}_{10} | 235 | | | | | | | The m | roun | s \mathbf{D}_{nh} | | | | 2 | 4 | | | | 31 | | 246 | T 32 | \mathbf{D}_{3h} | 250 | | | | | | \mathbf{D}_{2h} | 256 | T 34 | \mathbf{D}_{5h} | 263 | | | | | 33 | \mathbf{D}_{4h} | 273 | T 36 | \mathbf{D}_{7h} | 284 | | | | | 35 | \mathbf{D}_{6h} | 304 | T 38 | \mathbf{D}_{9h} | 314 | | | | | 37 | \mathbf{D}_{8h} | 343 | | $\mathbf{D}_{\infty h}$ | 357 | | | | 1 | 39 | \mathbf{D}_{10h} | 0.10 | _ 10 | wa | | | | | | | | | | | | | | | The group | s D | | | | | 365 | |-----------------|--|-----|-------------|-------------------------|-----|-----| | T 41 | | 366 | T 42 | \mathbf{D}_{3d} | 370 | | | \mathbf{T} 43 | \mathbf{D}_{4d}^{2d} | 375 | T 44 | \mathbf{D}_{5d} | 382 | | | T 45 | \mathbf{D}_{6d} | 388 | T 46 | \mathbf{D}_{7d} | 404 | | | \mathbf{T} 47 | | 413 | T48 | \mathbf{D}_{9d} | 436 | | | | \mathbf{D}_{10d}^{-6d} | 448 | | | | | | The group | s \mathbf{C}_{nv} | | | | | 481 | | T 50 | | 482 | T 51 | \mathbf{C}_{3v} | 484 | | | T 52 | \mathbf{C}_{4v}^{2v} | 489 | T 53 | \mathbf{C}_{5v} | 492 | | | T 54 | | 497 | T 55 | \mathbf{C}_{7v} | 501 | | | T 56 | | 507 | T 57 | \mathbf{C}_{9v} | 510 | | | | \mathbf{C}_{10v}° | 519 | T 59 | $\mathbf{C}_{\infty v}$ | 523 | | | The group | os \mathbf{C}_{nh} | | | | | 531 | | T 60 | $\mathbf{C}_{2h}^{\prime\prime\prime\prime}$ | 532 | T 61 | \mathbf{C}_{3h} | 534 | | | T 62 | \mathbf{C}_{4h} | 537 | T 63 | \mathbf{C}_{5h} | 541 | | | T 64 | | 545 | T 65 | \mathbf{C}_{7h} | 550 | | | T 66 | | 556 | T 67 | \mathbf{C}_{9h} | 562 | | | T 68 | \mathbf{C}_{10h} | 570 | | | | | | The cubic | groups | | | | | 579 | | T 69 | | 580 | T70 | ${f T}$ | 590 | | | T 71 | \mathbf{O}_h | 595 | T72 | \mathbf{T}_h | 632 | | | T 73 | \mathbf{T}_d | 637 | | | | | | The icosal | hedral groups | | | | | 641 | | T 74 | I | 642 | T 75 | \mathbf{I}_h | 659 | | | References | | | | | | 699 | | Index | | | | | | 701 |