Contents

Preface		xv
Part 1.	Basic Theory—The Simplex Method and Duality	1
Chapter	1. Introduction	3
î.	Managing a Production Facility	3
1.1.	Production Manager as Optimist	3
1.2.	Comptroller as Pessimist	4
2.	The Linear Programming Problem	6
	Exercises	8
	Notes	10
Chapter	2. The Simplex Method	11
1.	An Example	11
1.1.	Dictionaries, Bases, Etc.	14
2.	The Simplex Method	14
3.	Initialization	17
4.	Unboundedness	19
5.	Geometry	20
•	Exercises	21
	Notes	24
Chapter	3. Degeneracy	25
ī.	Definition of Degeneracy	25
2.	Two Examples of Degenerate Problems	26
3.	The Perturbation/Lexicographic Method	29
4.	Bland's Rule	32
5.	Fundamental Theorem of Linear Programming	34
6.	Geometry	35
	Exercises	39
	Notes	40

viii Contents

Chapter	4. Efficiency of the Simplex Method	41
1.	Performance Measures	41
2.	Measuring the Size of a Problem	42
3.	Measuring the Effort to Solve a Problem	42
4.	Worst-Case Analysis of the Simplex Method	43
	Exercises	48
•	Notes	49
Chapter	5. Duality Theory	51
1.	Motivation—Finding Upper Bounds	51
2.	The Dual Problem	53
3.	The Weak Duality Theorem	54
3. 4.	The Strong Duality Theorem	55
5.	Complementary Slackness	62
6.	The Dual Simplex Method	64
7.	A Dual-Based Phase I Algorithm	66
8.	The Dual of a Problem in General Form	68
9.	Resource Allocation Problems	70
10.	Lagrangian Duality	74
10.	Exercises	75
•	Notes	80
Chapter	6. The Simplex Method in Matrix Notation	81
1.	Matrix Notation	81
2.	The Primal Simplex Method	83
2. 3.	An Example	88
3.1.	First Iteration	89
3.1.	Second Iteration	90
3.2.	Third Iteration	92
3.4.	Fourth Iteration	93
3.4. 4.	The Dual Simplex Method	94
5.	Two-Phase Methods	95
Э.	Exercises	97
•	Notes	98
•		
Chapter		101
1.	Sensitivity Analysis	101
1.1.	Ranging	102
2.	Parametric Analysis and the Homotopy Method	105
3.	The Primal–Dual Simplex Method	109
	Exercises	111
_	Notes	113

Contents ix

Chapte	r 8. Implementation Issues	115
1.	Solving Systems of Equations: LU-Factorization	116
2.	Exploiting Sparsity	120
3.	Reusing a Factorization	126
4.	Performance Tradeoffs	130
5.	Updating a Factorization	131
6.	Shrinking the Bump	135
7.	Partial Pricing	137
8.	Steepest Edge	138
	Exercises	139
•	Notes	140
Chapte	r 9. Problems in General Form	143
1.	The Primal Simplex Method	143
2.	The Dual Simplex Method	145
•	Exercises	151
•	Notes	152
Chapte	r 10. Convex Analysis	153
i.	Convex Sets	153
2.	Carathéodory's Theorem	155
3.	The Separation Theorem	156
4.	Farkas' Lemma	158
5.	Strict Complementarity	159
	Exercises	162
•	Notes	162
Chapte	r 11. Game Theory	163
i.	Matrix Games	163
2.	Optimal Strategies	165
3.	The Minimax Theorem	167
4.	Poker	171
•	Exercises	174
•	Notes	176
Chapte	r 12. Regression	177
1.	Measures of Mediocrity	177
2.	Multidimensional Measures: Regression Analysis	179
3.	L^2 -Regression	180
4.	L^1 -Regression	183
5.	Iteratively Reweighted Least Squares	184
6.	An Example: How Fast is the Simplex Method?	185
7.	Which Variant of the Simplex Method is Best?	189

Contents

	Exercises	190
	Notes	195
Part 2.	Network-Type Problems	197
Chapter	13. Network Flow Problems	199
1.	Networks	199
2.	Spanning Trees and Bases	203
3.	The Primal–Dual Network Simplex Method	207
4.	The Integrality Theorem	218
4.1.	König's Theorem	218
	Exercises	219
	Notes	222
Chapter	14. Applications	223
1.	The Transportation Problem	223
2.	The Assignment Problem	225
3.	The Shortest-Path Problem	226
3.1.	Network Flow Formulation	227
3.2.	A Label-Correcting Algorithm	227
3.2.1	Method of Successive Approximation	228
3.2.2	Efficiency	228
3.3.	A Label-Setting Algorithm	228
4.	Upper-Bounded Network Flow Problems	230
5.	The Maximum-Flow Problem	232
	Exercises	234
	Notes	235
Chapter	15. Structural Optimization	237
Ī.	An Example	237
2.	Incidence Matrices	239
3.	Stability	240
4.	Conservation Laws	242
5.	Minimum-Weight Structural Design	245
6.	Anchors Away	247
	Exercises	250
	Notes	250
Part 3.	Interior-Point Methods	253
Chapter	16. The Central Path	255
	Warning: Nonstandard Notation Ahead	255
1	The Barrier Problem	256

Contents xi

2.	Lagrange Multipliers	257
3.	Lagrange Multipliers Applied to the Barrier Problem	261
4.	Second-Order Information	263
5.	Existence	263
	Exercises	266
	Notes	267
Chapter	17. A Path-Following Method	269
1.	Computing Step Directions	269
2.	Newton's Method	271
3.	Estimating an Appropriate Value for the Barrier Parameter	272
4.	Choosing the Step Length Parameter	273
5.	Convergence Analysis	273
5.1.	Measures of Progress	275
5.2.	Progress in One Iteration	275
5.3.	Stopping Rule	278
5.4.	Progress Over Several Iterations	278
	Exercises	280
•	Notes	283
Chapter	18. The KKT System	285
ĩ.	The Reduced KKT System	285
2.	The Normal Equations	286
3.	Step Direction Decomposition	288
	Exercises	291
	Notes	291
Chapter	19. Implementation Issues	293
Ĩ.	Factoring Positive Definite Matrices	293
1.1.	Stability	296
2.	Quasidefinite Matrices	297
2.1.	Instability	300
3.	Problems in General Form	303
	Exercises	308
	Notes	310
Chapter	20. The Affine-Scaling Method	311
î.	The Steepest Ascent Direction	311
2.	The Projected Gradient Direction	313
3.	The Projected Gradient Direction with Scaling	315
4.	Convergence	319
5.	Feasibility Direction	32
6.	Problems in Standard Form	322

xii Contents

	Exercises	323
	Notes	324
Chapter	r 21. The Homogeneous Self-Dual Method	325
1.	From Standard Form to Self-Dual Form	325
2.	Homogeneous Self-Dual Problems	326
2.1.	Step Directions	328
2.2.	Predictor-Corrector Algorithm	330
2.3.	Convergence Analysis	333
2.4.	Complexity of the Predictor-Corrector Algorithm	335
2.5.	The KKT System	336
3.	Back to Standard Form	337
3.1.	The Reduced KKT System	337
4.	Simplex Method vs Interior-Point Methods	339
т.	Exercises	343
•	Notes	345
•	110165	343
Part 4.	Extensions	347
Chapter	· 22. Integer Programming	349
1.	Scheduling Problems	349
2.	The Traveling Salesman Problem	351
3.	Fixed Costs	354
4.	Nonlinear Objective Functions	354
5.	Branch-and-Bound	356
	Exercises	368
	Notes	369
_	23. Quadratic Programming	371
1.	The Markowitz Model	371
2.	The Dual	375
3.	Convexity and Complexity	378
4.	Solution Via Interior-Point Methods	380
5.	Practical Considerations	382
•	Exercises	385
•	Notes	387
Chapter	24. Convex Programming	389
î.	Differentiable Functions and Taylor Approximations	389
2.	Convex and Concave Functions	390
3.	Problem Formulation	390
4.	Solution Via Interior-Point Methods	391
5.	Successive Quadratic Approximations	393

Contents	xii
. Exercises	393
. Notes	395
Appendix A. Source Listings	397
1. The Primal-Dual Simplex Method	398
2. The Homogeneous Self-Dual Simplex Method	401
Answers to Selected Exercises	405
Bibliography	407
Index	412