Contents

Pr	Preface Part I: Modelling		
Pa			
1	Modelling with the Primal Problem		3
	1.1	The primal LSIP problem	3
	1.2	Approximation	6
	1.3	Separation of sets in pattern recognition	13
	1.4		16
	1.5	Generalized Neyman–Pearson problem for grouped data	18
	1.6	Optimal experimental design in regression	20
	1.7	Constrained multinomial maximum-likelihood estimation	28
	1.8	Mathematical programming	31
	Exer	cises	37
	Note	es	43
2	Modelling with the Dual Problem		47
	2.1	Generalized finite sequences	47
	2.2	The dual problem	49
	2.3	Calculating the Chebyshev point-to-set distance	52
	2.4	Measuring the efficiency of an industrial process	54
	2.5	A generalized location problem	55
	2.6	Robustness in Bayesian statistics	56
	Exer	rcises	59
	Note	es	61
Pa	rt II	Linear Semi-infinite Systems	65
3	Alternative Theorems		
	3.1	Linear inequality systems in pattern recognition	67
	3.2		69

	3.3 Other alternative t	heorems	72
	Exercises	75 78	
	Notes		78
4	Consistency		81
_	4.1 Extended solutions	3	81
	4.2 Consistency tests		85
	4.3 Classifying redund	lant inequalities	89
	Exercises		96
	Notes		99
5	Geometry		101
3	5.1 Introduction		101
		f semi-infinite systems	104
	5.3 Geometry of the so		111
	5.4 Equivalent system		116
	Exercises	_	120
	Notes		125
6	Stability		127
U	6.1 Stability criteria		127
	6.2 Stability of consist	tent systems	128
	6.3 Stability of incons		135
	6.4 Stability of continuous systems		138
	6.5 Stability and redundancy		142
	Exercises		143
	Notes		147
P	art III: Theory of Line	ear Semi-infinite Programming	151
-	Ontimality		153
7	Optimality 7.1 Introduction		153
	7.1 Introduction 7.2 Primal optimality	conditions	154
	7.2 Fillial optimality 7.3 Dimension of the		158
	7.4 Optimality criteria		160
		tions for the convex SIP	162
	Exercises	dono loi tilo convon cui	164
	Notes		167
o	Duality		169
8			169
		the optimal value function	170
		reducible problems	172
	0.5 Discretizable and	Todacible problems	

		Contents	vii
	8.4 Uniform duality		178
	8.5 Approximating optimal solutions		183
	8.6 Duality theory for convex SIP		188
	Exercises		191
	Notes		197
9	Extremality and Boundedness		201
	9.1 Introduction		201
	9.2 On the primal feasible and optimal sets		202
	9.3 On the dual feasible and optimal sets		211
	Exercises		220
	Notes		224
10	Stability and Well-Posedness		227
	10.1 Introduction		227
	10.2 Optimal value function		228
	10.3 Hadamard well-posedness		231
	10.4 Optimal set mapping		235
	10.5 Unicity		237
	Exercises		241
	Notes		247
Par	t IV: Methods of Linear Semi-infinite Program	nming	251
11	Local Reduction and Discretization Method	ls	253
	11.1 Introduction		253
	11.2 The local reduction approach		255
	11.3 Grid discretization methods		257
	11.4 Cutting-plane discretization		261
	11.5 The three-phase method		270
	11.6 A test problem		273
	Exercises		279
	Notes		281
12	Simplex-Like and Exchange Methods		285
	12.1 Introduction		285
	12.2 A purification method for the dual problem		286
	12.3 A dual-simplex primal-exchange method		287
	12.4 A purification scheme for the primal problem		294
	12.5 A primal-simplex dual-exchange method		299
	Exercises		303
	Notes		307

viii Contents

Appendix	309
A.1 Convex sets	309
A.2 Convex functions	313
Notes	319
Symbols and Abbreviations	321
References	325
Index	339