CONTENTS **PREFACE** | 1 | INT | RODUCTION | | |---|---|--|---------------------| | | | RT I
NALYSIS | | | 2 | CLASSICAL OPTIMIZATION— UNCONSTRAINED AND EQUALITY CONSTRAINED PROBLEMS | | | | | | Unconstrained Extrema Equality Constrained Extrema and the Method of Lagrange Exercises References | 9
15
24
25 | | 3 | | TIMALITY CONDITIONS FOR CONSTRAINED | | | | 3.1
3.2 | First Order Necessary Conditions
for Inequality Constrained Extrema
Second Order Optimality Conditions | 28
45 | | | | ix | | xiii | | 3.3 Saddlepoints of the Lagrangian Exercises References | 51
56
60 | |---|---|--| | 4 | CONVEX SETS AND FUNCTIONS | | | | 4.1 Convex Sets 4.2 Convex Functions 4.3 Differential Properties of Convex Functions 4.4 Extrema of Convex Functions 4.5 Optimality Conditions for Convex Programs Exercises References | 63
71
83
92
95
100
103 | | 5 | DUALITY IN | | | | NONLINEAR CONVEX PROGRAMMING | | | | 5.1 Conjugate Functions 5.2 Dual Convex Programs 5.3 Optimality Conditions and Lagrange Multipliers 5.4 Duality and Optimality for Standard Convex Programs Exercises References | 106
112
125
131
139
141 | | 6 | GENERALIZED CONVEXITY | | | | 6.1 Quasiconvex and Pseudoconvex Functions6.2 Arcwise Connected Sets | 145 | | | and Convex Transformable Functions 6.3 Local and Global Minima Exercises References | 160
172
178
181 | | 7 | ANALYSIS OF
SELECTED NONLINEAR PROGRAMMING PROBLEMS | | | | 7.1 Quadratic Programming7.2 Stochastic Linear Programming | 185 | | | with Separable Recourse Functions 7.3 Geometric Programming Exercises References | 189
196
209
210 | | PART | Н | |------|------| | MET | HODS | | 8 | ON | E-DIMENSIONAL OPTIMIZATION | | |----|-------------------|---|---| | | | Newton's Method
Polynomial Approximation Methods
Direct Methods—Fibonacci and Golden Section Techniques
Optimal and Golden Block Search Methods
Exercises
References | 216
221
225
233
241
242 | | 9 | OP | LTIDIMENSIONAL UNCONSTRAINED IMIZATION WITHOUT DERIVATIVES: PIRICAL AND CONJUGATE DIRECTION METHODS | | | | 9.3
9.4
9.5 | | 245
247
249
255
259
265
275
281
285 | | 10 | | COND DERIVATIVE, STEEPEST DESCENT
D CONJUGATE GRADIENT METHODS | | | | | Newton-Type and Steepest Descent Methods
Conjugate Gradient Methods
Convergence of Conjugate Gradient Algorithms
Exercises
References | 288
299
307
316
318 | ## 11 VARIABLE METRIC ALGORITHMS | 11.1 | A Family of Variable Metric Algorithms | 322 | |------|--|-----| | 112 | Quasi-Newton Methods | 341 | ## xii CONTENTS | | 11.3
11.4 | Variable Metric Algorithms without Derivatives
Recent Methods Based on Nonquadratic Functions
Exercises
References | 353
355
364
367 | |----|------------------------------|---|--| | 12 | PEN | ALTY FUNCTION METHODS | | | | 12.3
12.4 | Interior Penalty Functions Parameter-Free Penalty Methods Exact Penalty Functions Multiplier and Lagrangian Methods | 372
378
385
388
399
410
412
415 | | 13 | BY | UTION OF CONSTRAINED PROBLEMS EXTENSIONS UNCONSTRAINED OPTIMIZATION TECHNIQUES | | | | 13.2
13.3 | Extensions of Empirical Methods Gradient Projection Algorithms for Linear Constraints A Quadratic Programming Algorithm Feasible Direction Methods Projection and Feasible Direction Methods for Nonlinear Constraints Exercises References | 420
423
437
442
449
454
457 | | 14 | APP | ROXIMATION-TYPE ALGORITHMS | | | | 14.1
14.2
14.3
14.4 | Reduced-Gradient Algorithms | 461
469
477
483
494
496 | | | AUT | HOR INDEX | 499 | 504 SUBJECT INDEX