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0 Miscellaneous Resources
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2 The Gamma and Related Functions
These functions enable us to evaluate a large class of integrals in
closed form. In addition, they play a central role in our development of
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3 Elements of Asymptotics
It is useful to introduce the asymptotic symbols “0,” “o0,” and “~ ”
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4 Evaluation of Sums: The Euler - MacLaurin Sum Expansion
We want to develop a connection between a smoothly varying sum and
an integral plus correction terms that can easily be evaluated or
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bounded. This is accomplished by means of the Euler—-MacLaurin sum
expansion.
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We concentrate our attention on second-order linear differential
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The simple harmonic oscillator is used as the working analytical tool
to analyze weakly nonlinear oscillatory systems. In this chapter, we
review some of the basic ideas and introduce some notation.

7.1 The Simple Harmonic Oscillator (SHO), 242

7.2 Transformation of Our Equations, 243

7.3 Perturbations, 244

7.4 Linear Transformations, 245

7.5 The Logistic Equation, 250 7.5.I The Exponential;
7.5.2 The Logistic Equation

Aspects of Harmonic Motion and the Concept
of Secular Terms

We study linear oscillatory systems from a perspective that prepares
us for some of the new ideas that characterize nonlinear perturbation
schemes.

8.1 The Flashing Clock, 256

8.2 Secular Terms, 258

8.3 The Forced Harmonic Oscillator, 259

8.4 The Altered Simple Harmonic Oscillator, 262

Equilibrium Points and the Phase Plane
We continue to develop our analytical tools and discuss some

qualitative concepts.
9.1 Equilibrium Points, 271
9.2 The Phase Plane, 280
9.3 Sign Conventions, 286

Conservative Systems

We discuss properties of conservativesystems and develop a systematic
method of analysis. This includes a discussion of the classical ideas of
Lindstedt and Poincaré.

10.1 Review of the Basic Ideas, 291

10.2 Properties of Conservative Systems, 292

10.3 Orientation to the Spirit of the Calculations, 298
10.3.1 Review; 10.3.2 Organization of the Calculation
10.4 The Poincaré-Lindstedt Method, 301
10.4.1 Computation of x,

239

241

255

271

291



11

12

13

CONTENTS

10.5 Another Viewpoint, 309
10.6 Conclusions, 312

Nonconservative Systems

Oscillatory systems that have damping and, hence, a change in their
total energy are introduced. This leads to the concept of time scales
that characterize the motion. We also discuss limit cycles, a new
phenomena that is characteristic of many stable nonlinear oscillatory
systems.

11.1 Damped Harmonic Motion, 314 11.1.1 Simplifying
Assumptions

11.2 Limit Cycles: A Nonlinear Phenomenon, 320
11.2.1 Definition of a Limit Cycle; 11.2.2 An Example
of a Limit Cycle

11.3 Discussion of Figures 11.6a and 11.65, 331

The Method of Averaging (MOA)
This method provides a basic analytical tool that enables us to obtain

a quantitative first approximation to the changes in our systems that
result from nonlinear perturbation terms.

12.1 Orientation and Introduction of Our Assumptions, 334
12.1.1 The Elementary Method of Averaging (MOA);
12.1.2  The Method of Krylov- Bogoliubov and Mitropolsky
(KBM); 12.1.3 The Method of Bogoliubov and Mitropolsky
or The Method of Rapidly Rotating Phase (MRRP);
12.1.4 The Basic Model

122 The Method of Averaging (MOA), 336
12.2.1 Sign Convention I: dx / dt =y; 12.2.2 Sign
Convention II: dx / dt = —y; 12.2.3 Basic Assumptions
of the MOA

12.3 Examples and Exercises, 341
12.4 Conclusions and Cautions, 354

The Method of Multiple Times Scales (MMTS)
This is a powerful broadly applicable technique that enables us to

characterize nonlinear oscillatory motion from a perspective different
than that obtained by the method of averaging.

13.1 Review, 356

13.2 The Concept of Time Scales: The MMTS, 357

13.3 The Equivalence of the MOA and MMTS, 364

13.4 Complex Notation, 367

13.5 Exercises and Examples, 369

xvii

314

333

356



xviii

14

15

16

CONTENTS

Higher-Order Calculations
We now both raise and polish some important points that are not able
to be discussed in the first approximation.

14.1 Second-Order Calculations for Conservative
Systems, 372 14.1.1 First Choice for the
Homogeneous Solution: C = 0; 14.1.2 Second Choice
for the Homogeneous Solution: C # 0
14.2 The Role of the Initial Conditions in the Expansion
Procedure, 379
14.3 A Quadratic Oscillator, 383
14.4 Scaling, 387 1441 The Pendulum; 14.4.2 Nonlinear
Damping; 14.4.3 An Oscillator with Quadratic and Cubic
Terms; 14.4.4 Comment on the Method
of Harmonic Balance
14.5 Limit Cycles Arising from “Quadratic Terms”, 402
14.6 Conclusions, 406

Error Analysis

Finally, we give an elementary discussion of the error associated with
our approximation and its affect on the time validity of the solution.
We restrict the discussion to conservative systems.

15.1 Outline of Our Approach, 408

15.2  Basic Tools for the Analysis of the Error, 409

15.3 Error Analysis for the Altered Simple Harmonic
Oscillator, 411 .

15.4 The Duffing Oscillator, 413

15.5 Conclusions, 416

Bibliography for Chapters 7 to 15, 417

One-Dimensional lterative Maps and the Onset of Chaos
There has been a significant set of developments associated with the
study of nonlinear difference equations that interface with the ideas
that are central to nonlinear differential equations. Although these
systems are different in many of their aspects, each has the capacity to
exhibit chaotic behavior. In this chapter, we consider nonlinear
difference equations and observe that it takes very little effort to
appreciate the fact that something profound and unexpected is under
investigation.

16.1 Introduction, 421
16.2 Orientation, 423

16.3 Review of the Logistic Differential Equation, 427
16.4 Introduction of a Map, 431

372

407

421



16.5

16.6

16.7
16.8

16.9

CONTENTS

Fixed Points, Attractors, Repellers,
and Multipliers, 432

Period-2 Cycles and the Pathway to Chaos, 437
16.6.1 Preview; 16.6.2 Shift of the Origin;

16.6.3 Calculation of the Period-2 Cycle;

16.6.4 Stability

The Iteration Process, 443

A Derivation of the Approximate Feigenbaum
Numbers, 447 16.8.1 The Scaled Map;

16.8.2 The Relationship Between the Numbers A;
and the Parameters a;; 16.8.3 The Feigenbaum
Number 8; 16.8.4 The Feigenbaum Number o;
16.8.5 The Convergence of the A Sequence

Concluding Remarks, 456
Bibliography, 456

Appendix A Discussion of Euler’s Constant

Index

Bibliography, 461

Xix

458

463



