CONTENTS

PR	EFACE	. *	xi
<u>СН</u>	APTER I:	·	
SO	ME MATHEMATICAL PROBLEMS OF THE THEORY		•
OF	ELASTICITY		1
81.	Some Functional Spaces and Their Properties.		
J	Auxiliary Propositions		1
82	Korn's Inequalities		13
3~.	2.1. The First Korn Inequality		13
	2.2. The Second Korn Inequality in Lipschitz Domains		14
	2.3. The Korn Inequalities for Periodic Functions		21
	2.4. The Korn Inequality in Star-Shaped Domains		23
§3.	Boundary Value Problems of Linear Elasticity		29
	3.1. Some Properties of the Coefficients of the		
	Elasticity System		29
	3.2. The Main Boundary Value Problems for the System		
	of Elasticity		32
	3.3. The First Boundary Value Problem		
	(The Dirichlet Problem)		33
	3.4. The Second Boundary Value Problem		
	(The Neumann Problem)		36
	3.5. The Mixed Boundary Value Problem		38
§ 4 .	Perforated Domains with a Periodic Structure.		
	Extension Theorems		42
	4.1. Some Classes of Perforated Domains		42
	4.2. Extension Theorems for Vector Valued Functions		
	in Perforated Domains		45

	4.3. The Korn Inequalities in Perforated Domains	51
§ 5 .	Estimates for Solutions of Boundary Value Problems	
Ū	of Elasticity in Perforated Domains	55
	5.1. The Mixed Boundary Value Problem	55
	5.2. Estimates for Solutions of the Neumann Problem	
	in a Perforated Domain	56
§ 6 .	Periodic Solutions of Boundary Value Problems	
	for the System of Elasticity	59
	6.1. Solutions Periodic in All Variables	59
	6.2. Solutions of the Elasticity System Periodic in	
	Some of the Variables	61
	6.3. Elasticity Problems with Periodic Boundary	
	Conditions in a Perforated Layer	64
§7.	Saint-Venant's Principle for Periodic Solutions	
	of the Elasticity System	67
	7.1. Generalized Momenta and Their Properties	67
	7.2. Saint-Venant's Principle for Homogeneous Boundary	
	Value Problems	71
	7.3. Saint-Venant's Principle for Non-Homogeneous	
	Boundary Value Problems	73
§ 8 .	Estimates and Existence Theorems for Solutions	
	of the Elasticity System in Unbounded Domains	84
	8.1. Theorems of Phragmen-Lindelöf's Type	84
	8.2. Existence of Solutions in Unbounded Domains	87
	8.3. Solutions Stabilizing to a Constant Vector at	
	Infinity	93
§9.	. Strong $G ext{-}Convergence$ of Elasticity Operators	98
	9.1. Necessary and Sufficient Conditions for the Strong	
	$G ext{-}Convergence$	98
	9.2. Estimates for the rate of Convergence of Solutions of	
	the Dirichlet Problem for Strongly G -Convergent Operators	111

Contents vii

CHAPTER II:	
HOMOGENIZATION OF THE SYSTEM OF LINEAR ELASTICITY.	
COMPOSITES AND PERFORATED MATERIALS	119
§1. The Mixed Problem in a Perforated Domain with the Dirichlet Boundary Conditions on the Outer Part of the Boundary and the Neumann Conditions on the Surface	
of the Cavities	119
1.1. Setting of the Problem. Homogenized Equations	119
1.2. The Main Estimates and Their Applications	123
§2. The Boundary Value Problem with Neumann Conditions	
in a Perforated Domain	134
2.1. Homogenization of the Neumann Problem in a Domain Ω for a Second Order Elliptic Equation with Rapidly	
Oscillating Periodic Coefficients	134
2.2. Homogenization of the Neumann Problem	
for the System of Elasticity in a Perforated Domain.	
Formulation of the Main Results	140
2.3. Some Auxiliary Propositions	142
2.4. Proof of the Estimate for the Difference between	
a Solution of the Neumann Problem in a Perforated	
Domain and a Solution of the Homogenized Problem	149
2.5. Estimates for Energy Integrals and Stress Tensors	157
2.6. Some Generalizations	158
§3. Asymptotic Expansions for Solutions of Boundary	
Value Problems of Elasticity in a Perforated Layer	163
3.1. Setting of the Problem	163
3.2. Formal Construction of the Asymptotic Expansion	164
3.3. Justification of the Asymptotic Expansion.	
Estimates for the Remainder	171
§4. Asymptotic Expansions for Solutions of the Dirichlet	
Problem for the Elasticity System in a Perforated Domain	178

4.1. Setting of the Problem. Auxiliary Results

178

viii Contents

		100
	4.2. Justification of the Asymptotic Expansion	185
§ 5 .	Asymptotic Expansions for Solutions of the Dirichlet	
	Problem for the Biharmonic Equation. Some Generalizations	
	for the Case of Perforated Domains with a Non-Periodic	
	Structure	191
	5.1. Setting of the Problem. Auxiliary Propositions	191
	5.2. Justification of the Asymptotic Expansion for Solutions	
	of the Dirichlet Problem for the Biharmonic Equation	197
	5.3. Perforated Domains with a Non-Periodic Structure	203
§ 6 .	Homogenization of the System of Elasticity with	
	Almost-Periodic Coefficients	206
	6.1. Spaces of Almost-Periodic Functions	206
	6.2. System of Elasticity with Almost-Periodic	
	Coefficients. Almost-Solutions	209
	6.3. Strong G -Convergence of Elasticity Operators with	
	Rapidly Oscillating Almost-Periodic Coefficients	217
§7.	Homogenization of Stratified Structures	220
	7.1. Formulas for the Coefficients of the Homogenized	
	Equations. Estimates of Solutions	220
	7.2. Necessary and Sufficient Conditions for Strong	
	$G ext{-}Convergence$ of Operators Describing	
	Stratified Media	230
§ 8 .	Estimates for the Rate of G -Convergence of	
	Higher-Order Elliptic Operators	245
	8.1. G -Convergence of Higher-Order Elliptic Operators	
	(the n -dimensional case)	245
	8.2. G-Convergence of Ordinary Differential Operators	255

Contents ix

	APTER III:	
SPE	ECTRAL PROBLEMS	263
§1.	Some Theorems from Functional Analysis.	
	Spectral Problems for Abstract Operators	263
	1.1. Approximation of Eigenvalues and Eigenvectors of	
	Self-Adjoint Operators	263
	1.2. Estimates for the Difference between Eigenvalues and	
	Eigenvectors of Two Operators Defined in Different Spaces	266
§2.	Homogenization of Eigenvalues and Eigenfunctions of	
	Boundary Value Problems for Strongly Non-Homogeneous	
	Elastic Bodies	275
	2.1. The Dirichlet Problem for a Strongly G -Convergent	
	Sequence of Operators	275
	2.2. The Neumann Problem for Elasticity Operators with	
	Rapidly Oscillating Periodic Coefficients in a	
	Perforated Domain	279
	2.3. The Mixed Boundary Value Problem for the System of	
	Elasticity in a Perforated Domain	286
	2.4. Free Vibrations of Strongly Non-Homogeneous	
	Stratified Bodies	290
§3.	On the Behaviour of Eigenvalues and Eigenfunctions	
	of the Dirichlet Problem for Second Order Elliptic	
	Equations in Perforated Domains	294
	3.1. Setting of the Problem. Formal Constructions	294
	3.2. Weighted Sobolev Spaces. Weak Solutions of a Second	
	Order Equation with a Non-Negative Characteristic Form	296
	3.3. Homogenization of a Second Order Elliptic Equation	
	Degenerate on the Boundary	308
	3.4. Homogenization of Eigenvalues and Eigenfunctions	
	of the Dirichlet Problem in a Perforated Domain	313
§4.	Third Boundary Value Problem for Second Order	
-	Elliptic Equations in Domains with Rapidly Oscillating	

x Contents

4.1. Estimates for Solutions 4.2. Estimates for Eigenvalues and Eigenfunctions §5. Free Vibrations of Bodies with Concentrated Masses 5.1. Setting of the Problem 5.2. The case $-\infty < m < 2$, $n \ge 3$ 5.3. The case $m > 2$, $n \ge 3$	317 317
4.2. Estimates for Eigenvalues and Eigenfunctions §5. Free Vibrations of Bodies with Concentrated Masses 5.1. Setting of the Problem 5.2. The case $-\infty < m < 2, n \geq 3$ 5.3. The case $m > 2, n \geq 3$ 5.4. The case $m = 2, n \geq 3$	317
§5. Free Vibrations of Bodies with Concentrated Masses 5.1. Setting of the Problem 5.2. The case $-\infty < m < 2$, $n \ge 3$ 5.3. The case $m > 2$, $n \ge 3$ 5.4. The case $m = 2$, $n \ge 3$	
5.1. Setting of the Problem 5.2. The case $-\infty < m < 2, n \geq 3$ 5.3. The case $m > 2, n \geq 3$ 5.4. The case $m = 2, n \geq 3$	323
5.1. Setting of the Froblem 5.2 . The case $-\infty < m < 2$, $n \ge 3$ 5.3 . The case $m > 2$, $n \ge 3$ 5.4 . The case $m = 2$, $n \ge 3$	327
5.3. The case $m>2$, $n\geq 3$ 5.4. The case $m=2$, $n\geq 3$	327
5.4. The case $m=2, n\geq 3$	330
5.11. The case no 5	333
§6. On the Behaviour of Eigenvalues of the Dirichlet	340
Problem in Domains with Cavities Whose Concentration	
is Small	348
§7. Homogenization of Eigenvalues of Ordinary Differential	
Operators	354
§8. Asymptotic Expansion of Eigenvalues and Eigenfunctions	
of the Sturm-Liouville Problem for Equations with Rapidly	
Oscillating Coefficients	356
§9. On the Behaviour of the Eigenvalues and Eigenfunctions	
of a G -Convergent Sequence of Non-Self-Adjoint Operators	367
REFERENCES	383