Contents

Preface			<i>page</i> ix
1	Introduction		
	1.1	Algebraic and analytic subspaces	1 4
	1.2	Elliptic curves	7
	1.3	Notation	10
2	Manifolds		11
	2.1	Manifolds defined in the traditional way	11
	2.2	Sheaves of rings and ringed spaces	14
	2.3	There are not many maps of ringed spaces	19
	2.4	The sheaf theoretic definition of a manifold	23
3	Schemes		26
	3.1	The space $Spec(R)$	27
	3.2	A basis for the Zariski topology	29
	3.3	Localization of rings	31
	3.4	The sheaf \tilde{R} on Spec(R)	36
	3.5	A return to the world of simple examples	44
	3.6	Maps of ringed spaces (Spec(S), \tilde{S}) \rightarrow (Spec(R), \tilde{R})	50
	3.7	Some immediate consequences	54
	3.8	A reminder of Hilbert's Nullstellensatz	59
	3.9	Ringed spaces over $\mathbb C$	60
	3.10	Schemes of finite type over $\mathbb C$	64
4	The complex topology		
	4.1	Synopsis of the main results	71
	4.2	The subspace $Max(X) \subset X$	72

vi Contents

	4.3	The correspondence between maximal ideals and	77.77	
		$\varphi:R o\mathbb{C}$	77	
	4.4	The special case of the polynomial ring	79	
	4.5	The complex topology on $MaxSpec(R)$	83	
	4.6	The complex topology on schemes	91	
5		nalytification of a scheme	100	
	5.1	Synopsis of the main results	100	
	5.2	The Hilbert Basis Theorem	102	
	5.3	The sheaf of analytic functions on an affine scheme	104	
	5.4	A reminder about Fréchet spaces	111	
	5.5	The ring of analytic functions as a completion	116	
	5.6	Allowing the ring and the generators to vary	120	
	5.7	Affine schemes, done without coordinates	132	
	5.8	In the world of elementary examples	142	
	5.9	Gluing it all	159	
6	The h	nigh road to analytification	162	
	6.1	A coordinate-free approach to polydiscs	162	
	6.2	The high road to the complex topology	166	
	6.3	The high road to the sheaf of analytic functions	167	
7	Coherent sheaves			
	7.1	Sheaves of modules on a ringed space	171	
	7.2	The sheaves \widetilde{M}	179	
	7.3	Localization for modules	181	
	7.4	The sheaf of modules more explicitly	183	
	7.5	Morphisms of sheaves	185	
	7.6	Coherent algebraic sheaves	190	
	7.7	Coherent analytic sheaves	200	
	7.8	The analytification of coherent algebraic sheaves	201	
	7.9	The statement of GAGA	207	
8	Proje	Projective space – the statements 21		
	8.1	Products of affine schemes	213	
	8.2	Affine group schemes	216	
	8.3	Affine group schemes acting on affine schemes	221	
	8.4	The action of the group of closed points	228	
	8.5	Back to the world of the concrete	236	
	8.6	Quotients of affine schemes	239	
	8.7	Sheaves on the quotient	245	
	8.8	The main results	248	
	8.9	What it all means, in a concrete example	253	
	0.7	Tractic an mound, in a concrete example	د د س	

Contents	vii
Contents	VII

9 Projec	Projective space – the proofs	
9.1	A reminder of symmetric powers	272
9.2	Generators	273
9.3	Finite dimensional representations of \mathbb{C}^*	282
9.4	The finite generation of the ring of invariants	289
9.5	The topological facts about $\pi: X \to X/G$	292
9.6	The sheaves on X/G	299
9.7	Two technical lemmas	303
9.8	The global statement about coherent sheaves	310
9.9	The case of the trivial group	323
10 The pr	0 The proof of GAGA	
10.1	The sheaves $\mathcal{O}(m)$	327
10.2	Another visit to the concrete world	329
10.3	Maps between the sheaves $\mathcal{O}(m)$	337
10.4	The coherent analytic version	342
10.5	Sheaf cohomology	349
10.6	GAGA in terms of cohomology	355
10.7	The first half of GAGA	369
10.8	Skyscraper sheaves	372
10.9	Skyscraper sheaves on \mathbb{P}^n	378
10.10	The second half of GAGA	383
Appendix 1 The proofs concerning analytification		392
Bibliogra	409	
Glossary	410	
Index	413	