CONTENTS

UNIT 1 - Equations and Matrices

FRAMES		PAGI
	BASIC IDEAS, ERRORS AND EVALUATION OF FORMULAE	
1 - 6	Why Numerical Methods	2
7 - 10	Aids to Calculation	4
	Accuracy and Errors -	-
11 - 15	Types of Error	5
16 - 18	Round-Off Effects of Errors on Calculations	7 9
19 - 32 33 - 38	Errects of Errors on Carculations Evaluation of Formulae	17
39 - 42	Synthetic Division	21
43 - 44	Miscellaneous Examples and Answers	24
	SOLUTION OF NON-LINEAR EQUATIONS	
1 - 3	Introduction	28
4 - 10	Iteration	29
11 - 18	Solution of Non-Linear Equations by means of the	
	Iteration Formula $x_{n+1} = F(x_n)$	33
19 - 31	The Newton-Raphson Iteration Formula	37
32 - 34	The Newton-Raphson Formula applied to Examples	
	with more than One Real Root	46
35 - 37	The Choice of x_0 for the Newton-Raphson Process	47
38	Errors in the Calculation	48
39	Equal or Nearly Equal Roots	49
40 - 41	The Accuracy of the Result	49
42	Complex Roots	50
43 - 48	The Secant Method and the Method of False Position	50
49	Simultaneous Non-Linear Equations	55 55
50 - 51	Miscellaneous Examples and Answers	33
APPENDIX A	Equal or Nearly Equal Roots	58
APPENDIX B	The Accuracy of the Result	61
APPENDIX C	Solution of Polynomial Equations with no Real Root	
C1 - C5	Extension of Newton's Method to Complex Roots	63
C6 - C17	Bairstow's Method Solution of Simultaneous Non-Linear Equations -	66
APPENDIX D D1 - D9	Extension of Direct Iteration Method	73
D10 - D16	Extension of Newton-Raphson Method	78
DIO DIO	<u>-</u>	
	SIMULTANEOUS LINEAR EQUATIONS	
1 - 8	Introduction	82
9 - 19	Solution of Linear Algebraic Equations -	
	Gaussian Elimination	86
20 - 23	Gaussian Elimination with Partial Pivoting	93
24 - 28	Gauss-Jordan Elimination	99
29	The Effect of Inaccurate Data	102

30 - 40	The Gauss-Seidel Iteration Method	102
41	Choleski's Method	109
42	Which Method is Best?	109
43 - 44	Miscellaneous Examples and Answers	111
APPENDIX	The Effect of Inaccurate Data	114
	MATRIX ALGEBRA, EIGENVALUES AND EIGENVECTORS	
1	Arithmetical Operations	117
2 - 17	Inversion by the Gauss-Jordan Process	117
18	The Effect of Inaccurate Data	128
19 - 31	Choleski's Factorisation Process	128
32 - 34	Application to Simultaneous Linear Equations	134
35 - 42	Application to Matrix Inversion	136
	Eigenvalues and Eigenvectors -	138
43 - 48	The Numerically Greatest Eigenvalue	141
49 - 57	The Numerically Least Eigenvalue The Remaining Eigenvalues and Eigenvectors	145
58 - 71 72 - 73	Miscellaneous Examples and Answers	151
, 2 , 5		
APPENDIX	Justification of Process for Numerically	155
	Largest Eigenvalue	133
	UNIT 1 - Revision Examples and Answers	159
	UNIT 2 - Finite Differences and their Applications	
	LEAST SQUARES	
1 - 3	Introduction	162
4 - 14	Fitting the 'Best' Straight Line to a Set of Points	163
15 - 19	Extension to Laws reducible to a Linear Form	168
20 - 28	Extension to Polynomial Laws	170
29 - 30	Use of a False Origin or Coding	173
31	The Best Straight Line when Both Variables are	375
	subject to Error	175
32 - 33	Miscellaneous Examples and Answers	175
	FINITE DIFFERENCES	
1 - 2	Introduction	179
3 - 4	Finite Differences	179
5 - 6	The Link between Differencing and Differentiation	181
7 – 8	Decimals in a Difference Table	183
9 - 19	The Build-up of Errors in a Difference Table due	10/
	to Errors in the Functional Values	184
20 - 21	Finite Difference Notations	190 191
22 - 26	The Forward Difference Operator Δ	195
27 - 29	The Shift Operator E	195
30 - 32	The Backward Difference Operator The Control Difference Operator &	197
33 - 38	The Central Difference Operator δ	199
39 - 41	The Averaging Operator µ	200
42 - 44	Other Operational Formulae	201
45	Summary Miscellaneous Examples and Answers	202
46 - 47	WISCELLAMENUS EXAMPLES UNA VUSMELS	

INTERPOLATION

1 - 5	Introduction and Linear Interpolation	205
6 - 15	The Newton-Gregory Forward Difference	
	Interpolation Formula	207
16 - 17	The Newton-Gregory Backward Difference Formula	211
18 - 24	Other Finite Difference Interpolation Formulae	212
25	Unequal Intervals of Tabulation	216
26 - 35	Divided Differences	216
36 - 45	Lagrange's Interpolation Formula	221
46 - 47	A Word of Warning	226
48 - 56	Inverse Interpolation	227
57	Summary of Interpolation Formulae	230
58 - 59	Miscellaneous Examples and Answers	231
	NUMERICAL DIFFERENTIATION	
1 - 3	Introduction	235
4 - 9	A Basic Process	236
10 - 22	Differentiation Based on Equal Interval	
	Interpolation Formulae	238
23 - 25	Differentiation Based on Lagrange's	
	Interpolation Polynomial	243
26 - 34	Higher Order Derivatives	244
35 - 36	Miscellaneous Examples and Answers	247
	NUMERICAL INTEGRATION	
1 - 6	Introduction	250
7 - 8	Counting Squares	252
9 - 15	The Rectangular Rule	253
16 - 19	The Trapezium Rule	255
20 - 23	Integration Formulae via Interpolation Formulae	257
24 - 31	Simpson's Rule	258
32 - 34	The Three-Eighths Rule	261
35 - 37	Other Integration Formulae	263
38 - 42	Errors	265
43	Summary of Integration Formulae	267
44 - 59	Romberg Integration	267
60	Unequally Spaced Data - Use of Lagrange's	
	Interpolation Formula	275
61 - 62	Miscellaneous Examples and Answers	275
	UNIT 2 - Revision Examples and Answers	281
	UNIT 3 - Differential Equations	
	FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS	
1 - 7	Introduction	284
8 - 16	Euler's Method	287
17 - 21	The Improved Euler Method	289
22 - 23	Predictor-Corrector Methods	291
24 - 28	The Modified Euler Method	292

29 - 36	Milne's Method	294
37 - 40	Taylor's Series Method for starting the	200
	Milne Process	298
41 - 43	Modification of the Milne Method	300
44	The Accuracy of the Various Methods	302
45 - 47	Stability of Milne's Method - Hamming's Method	302
48	Modified Hamming's Method	303
49 - 55	Runge-Kutta Method	304
56	Comparison of Methods	305
57	Summary of Formulae for solving $\frac{dy}{dx} = f(x, y)$	307
58 - 59	Summary of Formulae for solving $\frac{dy}{dx} = f(x, y)$ Miscellaneous Examples and Answers	308
	SIMULTANEOUS AND SECOND ORDER DIFFERENTIAL EQUATIONS	
1 - 3	Simultaneous Differential Equations - Introduction	315
4 – 6	Euler's Method	316
7 – 8	The Improved Euler Method	317
9 - 12	The Modified Euler Method	318
13 - 16	Runge-Kutta Method	319
17 - 19	Milne's Method	321
20 - 21	Modified Milne Method	322
22	Hamming's Method	323
23 - 24	Modified Hamming Method	323
25 - 26	Comparison of the Results	324
27	More Complicated Systems of Equations	325 325
28 - 29 30 - 36	Examples and Answers Second Order Differential Equations - Initial	323
30 - 30	Value Problems	326
37 - 44	The Special Case when the First Derivative	328
45	is missing	331
46 - 51	Boundary Value Problems The Trial and Error or Shooting Method	331
52 - 63	The Trial and Error or Shooting Method	334
	The Simultaneous Algebraic Equations Method	
64 - 65	Miscellaneous Examples and Answers	338
	PARTIAL DIFFERENTIAL EQUATIONS	
1 - 3	Introduction	343
4 - 20	Laplace's Equation $\frac{\partial^2 \theta}{\partial x^2} + \frac{\partial^2 \theta}{\partial y^2} = 0$	344
21 - 38	The Equation $\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$	350
39 - 53	The Equation $\frac{\partial \theta}{\partial t} = c^2 \frac{\partial^2 \theta}{\partial x^2}$	357
54 - 57	Errors in the Methods	364
58 - 59	Miscellaneous Examples (including Poisson's	
	Equation $\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} = f(x, y)$ and Answers	366
	UNIT 3 - Revision Examples and Answers	372
	REFERENCES	377
	INDEX	378