CONTENTS

For	Foreword			
		PART ONE: LINEAR ALGEBRA AND ANALYSIS		
I.	Lin	ear mappings. Operations on matrices.	2	
	1.	Representations of linear mappings by matrices	2	
		Non-commutativity of the product	4	
		Product of symmetric matrices	4	
	4.	Non-associativity of a column by column product	. 4	
		Lorentz rotations	5	
	6.	Solutions of linear equations	6	
	7.	Solutions of linear equations	7	
	8.	Solutions of linear equations	8	
	9.	Independence of linear equations (M.M.P. Paris test, 1955)	9	
	10.	Quadrupoles (commutativity) (M.M.P. Marseille, 1956)	12	
	11.	Computation of the inverse of a matrix (M.M.P. Lille, 1957)	13	
	12.	Inverse matrix. Divisors of zero (M.M.P. Lille, 1957)	15	
	13.	Group of matrices (M.M.P. Caen, 1957)	16	
II.	Pr	oper values and proper vectors. Reduction of matrices.	20	
	14.	Calculation of the proper values and proper vectors	2 0	
	15.	A System of differential equations with constant coefficients	21	
	16.	Group of matrices of dimension 2 (T.M.P. Paris, 1959)	22	
	17.	Multiple proper values (M.M.P. Marseille, 1956)	25	
		Multiple proper values	28	
		Multiple proper values	30	
	20.	Natural modes of vibration	32	
	21.	Functions of a matrix	34	
	22.	Necessary and sufficient condition for a matrix to have a complete		
		system of proper vectors	38	
	23.	Stochastic matrices	40	
	24.	Proper values of mappings in the space of all second-degree		
		polynomials	42	
	25.	Maximal properties of the proper values	43	
111.	S	calar product and norm. Hermitian operators.	47	
		Equality of scalar products in arbitrary bases	47	

f reluminate of degree b	48
27. Norms on the space of polynomials of degree p	50
27. Norms on the space of polyhothards and square matrices of dimension 2 28. Norms on the space of real square matrices of dimension 2	51
29. Proper values and vectors of an hermitian matrix	52
30. Gram determinant	54
31. Study of electric circuits	57
32. Unitary operators 33. Product of a positive definite operator and unitary operator	60
33. Product of a positive definite operator and unitary operator 34. Product of a positive definite operator and unitary operator	62
34. Product of a positive definite operator and answer in	64
35. Matrix commuting with its adjoint	67
36. System of coupled oscillators	72
37. Matrix differential equations	74
38. Positive definite quadratic forms 39. Proper values of a matrix A relative a matrix B —Simultaneous	
reduction of quadratic forms	78
IV. Vector calculus. Multiple integrals.	83
	83
40. Convergence of single and double integrals	86
41. Calculation of often appearing integrals	90
42. Divergence-free vector fields	91
43. Tensorial nature of the coefficients of a quadratic form	92
44. Rank of a tensor	93
45. Kronecker tensors	95
46. Contracted tensor	96
47. Space time of special relativity	99
48. Maxwell equations	102
49. Absolute differentials	103
50. Flux of the gradient of $1/r$	107
51. Stokes formula	112
52. Stokes formula	114
53. Stokes formula	
PART TWO: FUNCTION SPACES. INTEGRAL	
AND DIFFERENTIAL OPERATORS	
V. Function spaces and operators.	120
	120
1. Vector space and subspaces	120
2. Vector space and subspaces	122
3. Distance in a space of continuous functions	122
4. Norms on a space of continuously differentiable functions	124
5. Space of continuous functions with the norm L_1	125
6. Regulated functions7. Convergence of a series of functions in the sense of the norm L	127
7. Convergence of a series of functions in the sense of the hosting	128
8. Summable families 9. Pre-Hilbert inner product and norm	130
9. Pre-Hilbert inner product and norm	

10.	Convolutions of functions in L_2	131
	Convergence of a sequence in a Hilbert space	132
	Hilbert space of square summable sequences	133
	System of linear equations in a Hilbert space	136
	Primitive operator—Iteration	141
	Projectors	144
	Integral operators	146
	Fredholm integral operator	151
	Hermitian operator—Proper functions	158
	Adjoint operator	162
20	Operator such that $A^*A - AA^* = I$	163
21	Expansion in series of inverse operators in a Banach space	167
	Mellin and Fourier transforms	171
	Fourier transform of $ t ^{-1/2}$	176
20.	Fourier transform of $e^{-(1/2)t^2}$	178
25	Fourier transform of t^{α} and convolution product	179
VI. S	eries expansions of functions.	187
26.	Calculation of a Fourier series expansion	187
	Expansion in cosine series	187
28.	Expansion in sine series	188
29.	Convergence of a Fourier series expansion	188
30.	Exponential Fourier series	189
31.	Exponential Fourier series and Chebychev polynomials	193
32.	Fourier expansion and Bessel functions	195
	Differentiation of a Fourier series	196
	Differentiation of a Fourier series	198
35.	Fourier expansion on the circle—Differentiation	202
	Dirichlet kernel	206
	Bessel functions and Fourier transform of a function	209
38.	Series expansion in Legendre polynomials	211
	Chebychev polynomials	212
	Laguerre polynomials	215
	Laguerre polynomials	215
	Hermite polynomials	219
VII. [Differential equations.	221
43	Bessel equations	221
	Rotating string	223
	Legendre equation	225
	Legendre equation	227
47	Rotating beam (proper values and proper functions)	231
48	Bending of a beam (Fourier series and Laplace transform)	233
40.	Deformation of a beam (Fourier transform)	238
50	Volterra and Fredholm integral equations associated with	
50.	feretial equation	240

51. Integral equation associated with a differential equation	244
52. Solution of a differential equation by Laplace transform	246
53. Solution of an integro-differential equation by Laplace transform	248
54. Passage of a vehicle over an obstacle over an obstacle	249
55. Exercise on the beta and gamma functions	251
55. Exercise on the beta and gamma functions	253
56. Laplace transforms of Bessel functions	255
/III. Partial differential equations.	200
	255
57. Equation of a vibrating string	258
58. Cylindrical wave equation 59. Study of certain distributions, solutions of the vibrating string	
	262
equation	267
60. Telegrapher's equation	272
61. Oscillations of an elastic string	277
62. Laplacian in two variables	280
63. Study of $\Delta u = k^2 u$	283
64. Newtonian potential of a circumference	286
65. Electrostatic potential Legendre functions 66. Study with the help of distributions of $\Delta f + a^2 f = 0$	290
66. Study with the nelp of distributions of 27 f wy	294
67. Propagation of heat in a bar	296
68. Propagation of heat in a cylinder 69. Propagation of heat in a cylinder and Bessel functions	299
69. Propagation of neat in a cylinder and bessel randers	304
70. Heat propagation in a circular plate	308
71. Heat conduction in a sphere 72. Solution by Laplace transform of the wall problem (theory of hea	t) 310
72. Solution by Laplace transform of the wan problem (most)	•